
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice from both authors

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

with Mike Shah

18:30 - 20:30 ET
Thur. October 17, 2024

60 minutes with Q&A
Introductory/Intermediate
Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Code and Slides for the talk

● Code Located here:
https://github.com/MikeShah/T
alks/tree/main/2024/nycpp

● Slides posted after talk at:
○ www.mshah.io

● Live coding the examples from
this (if any) posted at:

○ www.youtube.com/c/MikeShah

3

https://github.com/MikeShah/Talks/tree/main/2024/nycpp
https://github.com/MikeShah/Talks/tree/main/2024/nycpp
http://www.mshah.io
http://www.youtube.com/c/MikeShah

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

4

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

5

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

Thanks for spending your
evening with me on a
weeknight during the
workweek!

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Railroads and Trains

6

A snapshot of some trains in Paris, just outside of the French C++
User Group (FRUG) meeting location

Transport Tycoon (1/2)

7

● A favorite game I started
playing when I was 5-6
years old,

● One of the goals of the
games is to build trains
that deliver goods between
stations

Transport Tycoon
Note: Shout out to OpenTTD which is actively updated if you
want to play for free!

https://www.openttd.org/

Transport Tycoon (2/2)

8

● If you build more tracks,
then you can have more
trains

○ More trains means more
goods delivered, and
(potentially) more profit

○ The core mechanic of the
game is simple to
understand

I count 4 tracks

Transport Tycoon
Note: Shout out to OpenTTD which is actively updated if you
want to play for free!

https://www.openttd.org/

Now of course... (1/2)

9

● You do have to manage
your resources -- the train
tracks especially can be
costly

○ And you do not have
unlimited money to build
train tracks

 https://www.youtube.com/watch?v=ohmqJNks2k4

https://www.youtube.com/watch?v=ohmqJNks2k4

Now of course... (2/2)

10

● You do have to manage
your resources

● You don’t have unlimited
money to build train
tracks

 https://www.youtube.com/watch?v=ohmqJNks2k4

https://www.youtube.com/watch?v=ohmqJNks2k4

Oh no!

11

● You do have to manage
your resources

● You don’t have unlimited
money to build train
tracks

 https://www.youtube.com/watch?v=ohmqJNks2k4

https://www.youtube.com/watch?v=ohmqJNks2k4

One solution: Share the track with multiple trains (1/2)

12

● So a possible solution
then is to share one track
with multiple trains.

○ Our station can be shared
otherwise between
multiple trains because
there are multiple unique
tracks within the station to
deliver the goods.

https://open-ttd.fandom.com/wiki/Train_Stations

https://open-ttd.fandom.com/wiki/Train_Stations

One solution: Share the track with multiple trains (2/2)

13

● So a possible solution
then is to share one track
with multiple trains.

○ Our station can be shared
otherwise between
multiple trains because
there are multiple unique
tracks within the station to
deliver the goods.

● If you observe carefully,
you’ll notice signals exist
to coordinate the trains

○ We don’t want any
accidents! https://open-ttd.fandom.com/wiki/Train_Stations

https://open-ttd.fandom.com/wiki/Train_Stations

Coordinating (i.e. Synchronizing) trains

14

● Given more ‘signals’ we can create
more intricate train networks to
drop off more goods

○ We’ve taken care to optimize the
amount of track we need to lay out as
well.

○ In some cases we may add a few more
tracks -- but the idea is useful.

● Of course -- we have to be a bit
more careful as we add more
signals, trains, and track

○ Synchronizing and coordinating all of
these ‘resources’ takes careful thought!

Top: Transport Tycoon
Bottom: A different game called Factorio
https://wiki.factorio.com/Tutorial:Train_signals

https://wiki.factorio.com/Tutorial:Train_signals

Into today’s talk...

15

● Today we’re going to do a tour
of fundamental concurrent
programming primitives

○ It’s no more difficult to understand
than playing a game like Transport
Tycoon.

○ And in some cases we will just
fundamentally want to avoid
synchronization

● Okay -- let’s dive into
concurrency

Top: Transport Tycoon
Bottom: A different game called Factorio
https://wiki.factorio.com/Tutorial:Train_signals

https://wiki.factorio.com/Tutorial:Train_signals

Today’s Talk

16

Abstract (1/2)

Talk Abstract: Our world is concurrent and often we need to write software
that models our concurrent world. Luckily, the C++ Standard Template Library
(STL) has with each new release provided several mechanisms for writing
concurrent software. So whether you need the C++ STL concurrency library to
model a concurrent problem, or otherwise utilize concurrency for performance,
this talk will provide an overview of the concurrency support library. In this
talk, I will give a tour with code examples of the concurrency primitives
provided from C++11 to C++23. The audience will leave this talk knowing the
difference between mechanisms such as thread, jthread, mutexes, semaphores,
latches, and barriers. I'll also go one step further showing how to debug
concurrency bugs by isolating and recording the bugs with tools like GDB and
UDB. I Promise this talk in the Future will help you provide a foundation of C++
concurrency (oh yes, we'll talk about promises and futures as well!).

17

The abstract that you read and enticed you to join me here!

Abstract (2/2)

Talk Abstract: Our world is concurrent and often we need to write software
that models our concurrent world. Luckily, the C++ Standard Template Library
(STL) has with each new release provided several mechanisms for writing
concurrent software. So whether you need the C++ STL concurrency library to
model a concurrent problem, or otherwise utilize concurrency for performance,
this talk will provide an overview of the concurrency support library. In this
talk, I will give a tour with code examples of the concurrency primitives
provided from C++11 to C++23. The audience will leave this talk knowing the
difference between mechanisms such as thread, jthread, mutexes,
semaphores, latches, and barriers. I'll also go one step further showing how to
debug concurrency bugs by isolating and recording the bugs with tools like
GDB and UDB. I Promise this talk in the Future will help you provide a
foundation of C++ concurrency (oh yes, we'll talk about promises and futures as
well!). 18

The abstract that you read and enticed you to join me here!● Topics for today are a tour of foundational
concurrency primitives
○ As mentioned, there will be lots of

small code samples study after

Concurrency Motivation

19

● Today I’ll assume you know some of
the motivations of concurrency --
here’s a short summary:

○ Potential gain in performance
○ Perhaps models your problem in a

better/safer way
● If you want some more motivation, I

have previous resources linked that
provide a longer and gentle
introduction.

Top
Back to Basics: Concurrency - Mike Shah - CppCon 2021
https://www.youtube.com/watch?v=pfIC-kle4b0

Bottom
The what and the why of concurrency | Introduction to Concurrency in Cpp
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicgqK
nvq50OCXM

https://www.youtube.com/watch?v=pfIC-kle4b0
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

(Aside) Better Code: Concurrency

20

● Now after today’s talk, you
can watch Sean Parent’s Better
Code: Concurrency talk

○ The talk warns about using raw
synchronization primitives that
I’m teaching you today

■ That’s okay -- I need to show
you the primitives, and then
you can build safer higher
level abstractions that your
team can use.

■ (And that’s sort of what Sean
is saying too)

C++ Now Video: https://www.youtube.com/watch?v=32f6JrQPV8c (94 minutes)
Code::Dive Video: https://youtu.be/QIHy8pXbneI?si=YVT_Le7EBebY1Bzf&t=468 (78 minutes -- timestamp at
7:48)

Slides: https://sean-parent.stlab.cc/presentations/2016-08-08-concurrency/2016-08-08-concurrency.pdf

https://www.youtube.com/watch?v=32f6JrQPV8c
https://youtu.be/QIHy8pXbneI?si=YVT_Le7EBebY1Bzf&t=468
https://sean-parent.stlab.cc/presentations/2016-08-08-concurrency/2016-08-08-concurrency.pdf

Topics Outline

21

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches / barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Thread-Based Concurrency

22

#include <thread>
std::thread

23

24

https://en.cppreference.com/w/cpp/thread/thread

https://en.cppreference.com/w/cpp/thread/thread

Thread Example - Launching a thread (1/2)

● #include <thread>
○ std::thread

● Launching a std::thread is this
idea of ‘fork-join parallelism’ and
with threads our memory is
shared

○ Note: There’s a key point of ‘is the
problem large enough’ that it’s
worth separating out the work that
we’ll want to touch on later.

25

https://en.cppreference.com/w/cpp/thread/thread
https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

Thread Example - Launching a thread (2/2)

● #include <thread>
○ std::thread

● Launching a std::thread is this
idea of ‘fork-join parallelism’ and
with threads our memory is
shared

○ Note: There’s a key point of ‘is the
problem large enough’ that it’s
worth separating out the work that
we’ll want to touch on later.

26

Note: You may
need to
explicitly link in
the pthread
library on linux.

https://en.cppreference.com/w/cpp/thread/thread
https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

Visual execution of “Hello Thread” (1/13)

27

Visual execution of “Hello Thread” (2/13)

28

Main Thread

main() function where all
C++ programs start.

We have 1 thread in our
program (the main thread)

Visual execution of “Hello Thread” (3/13)

29

Main Thread

We begin constructing
std::thread
myThread

Visual execution of “Hello Thread” (4/13)

30

Main Thread

std::thread myThread

Visual execution of “Hello Thread” (5/13)

31

Main Thread

std::thread myThread(&test,100)

Our new thread
will begin
executing it’s
logical control
flow from the
‘test’ function.
separately from
main()

The thread will
start executing
immediately on
construction

(Remember,
threads shares
code and the
heap)

Visual execution of “Hello Thread” (6/13)

32

Main Thread

myThread

So now we have two
“threads” executing

std::thread myThread(&test,100)

Visual execution of “Hello Thread” (7/13)

33

Main Thread

Both threads of execution are
concurrently alive!

(maybe executing simultaneously on separate
cores, or time slicing on the same one)

std::thread myThread(&test,100) myThread

https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice

Visual execution of “Hello Thread” (8/13)

34

Main Thread

myThread.join()

std::thread myThread(&test,100) myThread

● We just happen to execute the next line in main
thread

● myThread.join() tells the ‘Main Thread’ to wait on
myThread to finish.

○ We ‘wait’ in the main thread, because this is
where we are calling join from

Visual execution of “Hello Thread” (9/13)

35

Main Thread

std::thread myThread(&test,100)

myThread.join()

myThread

Visual execution of “Hello Thread” (10/13)

36

Main Thread

myThread.join()

std::thread myThread(&test,100)

std::println

myThread

Visual execution of “Hello Thread” (11/13)

37

std::thread myThread(&test,100)

Main Thread

myThread.join() std::println

return

myThread

When we return, our
thread terminates.
Now our ‘main’ thread
can resume

Visual execution of “Hello Thread” (12/13)

38

Main Thread

myThread.join()

std::thread myThread(&test,100)

std::println

myThread

return

Visual execution of “Hello Thread” (13/13)

39

Main Thread

std::thread myThread(&test,100)

myThread.join()

return

std::println

myThread

return

We can also move our function into a lamba

● std::thread takes any
callable as the
parameter--so:

○ lambdas, functions, functors,
std::function, std::bind, etc. are
all fine to call from thread

40

https://en.cppreference.com/w/cpp/named_req/Callable
https://en.cppreference.com/w/cpp/utility/functional/function
https://en.cppreference.com/w/cpp/utility/functional/bind

Same example as before -- but with a lambda!

● Same logic as before, but
instead of a function, I have
a lambda with 1 parameter
and a void return value

● Note:
○ If you want to pass a reference

or some heap memory into a
thread use std::cref or std::ref

■ Tutorial

41

https://www.codementor.io/@jhadheeraj/thread-how-to-pass-arguments-to-a-thread-14thbsv9pi

Now how about if we wanted 10 threads (0/5)

● Let’s create a
std::vector<std::thread>

○ Then we’ll launch 10 threads
from a loop

● It’s important however,
that we also join each of
the threads!

○ Why?
■ Because our main

thread of execution
could complete before
all std::thread’s
otherwise complete
their task. 42

Now how about if we wanted 10 threads (1/5)

● So here we create each
of our threads and join
them

● Note:
○ std::thread is not

copyable (kind of
important if you think
about it) -- so they are
moved into the vector.

○ Using a std::vector is a
common idiom to ‘hold
onto’ threads.

43

Now how about if we wanted 10 threads (2/5)

● So here we create each
of our threads and join
them

44

Now how about if we wanted 10 threads (3/5)

● So here we create each
of our threads and join
them

45

● The result seems a little
strange...anyone see the
problem?
○ (Hint: Look at arguments

passed in output)

Now how about if we wanted 10 threads (4/5)

● So here we create each
of our threads and join
them

46

● By joining our threads immediately after
launching our code, we’ve effectively made our
program sequential (i.e. no performance gain)

● This is a form of over-synchronization
○ We have serialized something that we want to happen

concurrently

https://aws.amazon.com/blogs/devops/detecting-concurrency-bugs-with-amazon-codeguru/

Let’s try debugging our over-synchronization
error

47

Debugging the initial problem

48

● Debugging concurrent programs is not always easy
● I’m going to use live-recorder here

○ https://undo.io/udb-free-trial/
● Why?

○ It allows me to ‘capture’ one specific execution of my concurrent program run
○ This can be handy later on if we don’t necessarily have deterministic execution

■ In this specific case of course, we just so happen to :)

https://undo.io/udb-free-trial/

Potential debugging workflow

49

1. First compile with debug symbols:
a. g++-11 -g -std=c++23 ../thread3.cpp -o prog -lpthread

2. Then run your program as normal
a. sudo ~/Downloads/Undo-Suite-x86-8.0.0/live-record --recording-file

recording.undo ./prog
i. Note: Need sudo permissions to save recording

3. Then replay
a. sudo ~/Downloads/Undo-Suite-x86-8.0.0/udb recording.undo
b. Can debug as normal

i. e.g.
1. b main // set a breakpoint at main
2. next // step through code
3. info threads // see how many threads are active

Debug / Live Recorder / Replay (Backup Animation)

50

Debug / Live Recorder / Replay (Backup Animation)

51

Something about this just makes me
truly happy :)

I can also store these replays too -- I
gave some to students before and
told them to find the bug.

(Aside) Potential debugging workflow

52

1. Review:
a. g++-11 -g -std=c++23 ../thread3.cpp -o prog -lpthread
b. sudo ~/Downloads/Undo-Suite-x86-8.0.0/live-record --recording-file

recording.undo ./prog
c. sudo ~/Downloads/Undo-Suite-x86-8.0.0/udb recording.undo

2. Commands to try otherwise
a. layout src (tui mode)
b. b main
c. next
d. reverse-next

Now how about if we wanted 10 threads (5/5)

● So here we create each
of our threads and join
them

53

Here’s the fix -- move ‘join’ to ‘unblock’ (i.e.
avoid waiting) while spawning new threads

Observe the new output, the thread
execution is out of order now (which is expected when 10
threads are simultaneously executed, the threads are scheduled according to OS)

Now how about if we wanted 10 threads (5/5)

● So here we create each
of our threads and join
them

54

● So again -- remember what ‘join’ does
○ The calling thread is blocked, until all of threads[i] are complete

at line 24

#include <thread>
std::jthread

55

C++ 20 - std::jthread (1/2)

● std::jthread is similar to
std::thread, but an automatic
request to join on destruction is
made using RAII

○ Note: You can still ‘join’ manually if
you want more explicit control

○ std::jthread helps ensure we do not
forget to join otherwise!

56

https://en.cppreference.com/w/cpp/thread/jthread/request_stop

C++ 20 - std::jthread (2/2)

57

Teams of
threads

Data Parallelism

58

jthread 1
jthread 2

jthread 3 jthread 4

Launching threads was fun -- let’s launch 1000s of threads!

59

Launching threads was fun -- let’s launch 1000s of threads!

Teams of
threads

Data Parallelism

Thread Parallelism

60

● We’re in a pretty good spot in
our introduction to threads

○ Each std::thread or std::jthread
cherrily does some independent
work

● This is effectively like each
train executing on its own
rail as we started out

● But what if we need to
compute some final result?

○ We launch many threads -- and
have them work together as a
team of threads

○ (next slide)

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

Thread Team (0/9)

61

● Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

Thread Team (1/9)

62

● Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

● The task: increment unique
indices in a global shared
array.

● Approach: Launch multiple
threads that work on
separate indices

Thread Team (2/9)

63

● Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

● The task: increment unique
indices in a global shared
array.

● Approach: Launch multiple
threads that work on
separate indices

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

From the main thread we’ll ‘spawn’ 4 threads in a
loop -- push them into a vector (like previous) and
have them work on separate blocks of shared

memory

Thread Team (3/9)

64

● Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

● The task: increment unique
indices in a global shared
array.

● Approach: Launch multiple
threads that work on
separate indices

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

Below is an example of ‘shared memory’

Shared memory
(i.e. a big array)

Thread Team (4/9)

65

● Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

● The task: increment unique
indices in a global shared
array.

● Approach: Launch multiple
threads that work on
separate indices

Main Thread

jthread1

jthread2

jthread3

jthread4

Main Thread

● Each thread writes to separate indices in a shared
heap-allocated block of memory

○ (Remember threads share heap and global
memory, but have own local stack memory)

read/write this block

read/write this block

read/write this block

read/write this block

jthread1

jthread2

jthread3

jthread4

Thread Team (5/9)

66

● Here is full resulting code
○ We’ll look at each chunk in the

next few slides

Thread Team (6/9)

67

● Here is the resulting code

Here we initialize a chunk of shared memory

Thread Team (9/9)

68

● Here is the resulting code

Next we create a ‘worker thread’ that will execute --
observe:
● An ‘index’ and ‘jobSize’ provides the ‘range’ (start

and finish) of where we’ll access the array.
○ Care is taken so we do not overlap

Thread Team (1/

69

● Here is the resulting code

We then do ‘5’ iterations with ‘4’ worker threads

Thread Team (9/9)

70

● The program works as
expected

○ i.e. We successfully
increment each value ‘5’
times (Printing out the 256,
fives sequentially at the
end)

Thread Team Round 2 (1/5)

71

● Great -- now let’s do a real
test on a “real” workload --
I’ve modified the program
to now run ‘50000’ times

○ and ... (next slide)

Thread Team Round 2 (2/5)

72

● Great -- now let’s do a real
test on a “real” workload --
I’ve modified the program
to now run ‘50000’ times

○ and ... (next slide)
○ CRASH

Thread Team Round 2 (3/5)

73

● Question to Audience:
○ What is the issue? (Hint highlighted)

Thread Team Round 2 (4/5)

74

● Question to Audience:
○ What is the issue? (Hint highlighted)
○ Answer: Too many threads created

on stack at once for my cpu
■ I have created 50,000*4 threads

for one process.
● The threads don’t

terminate after all, until
‘vector’ destructor is
called

● (And that is end of
program)

■ Note: With other thread
libraries, we also need to be
aware of what could happen
when resizing containers

● (std::threads are
non-copyable, which is
good and prevents weird
behavior).

Thread Team Round 2 (5/5)

75

● Live GDB Session:
○ Launch GDB

○ set mi-async [on|
■ Then load executable: file ./prog

○ b 37 if j > 15
■ Observe that ‘threads vector

‘never shrinks!
■ Note: threads are ‘moved’ instead

of copied, but we still have a large
‘move’ to do -- plus our stack of
‘functions’ potentially grows very
fast!

○ set scheduler-locking on
■ Mode needs to be ‘on’
■ This pauses all threads when one

stops -- easier to debug
○ display threads.size()

■ Updates when we push into size
○ Press ‘c’ for continue a few times
○ call malloc_stats()

■ Gives us some idea of memory
allocations (at least for the heap
allocations with threads)

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Asynchronous-and-non_002dstop-modes.html

Thread Team Fixed (1/2)

76

● The fix itself was quite
simple -- but could be
tricky to find!

○ Idea is to move ‘threads’
into scope of each iteration

○ Would I have found this bug
if I only launched 50
threads? How about 1000?

○ The answer is it’s system
dependent on the thread
limits

Thread Team Fixed (2/2)

77

● There are a finite number of
threads available on your
operating system

○ As well as stack size (ulimit -s
indicates 8mb on my machine)

○ (See ‘ulimit -a’ for more info)

Can I launch 50,000 threads with my limit?

78

● Searching: nl /etc/systemd/system.conf
○ I’m allowed to have 15% of my maximum allowable threads allocated to a process on Ubuntu

22.04
○ (This seems reasonable -- I could for instance launch 25,000 threads no problem -- probably

way too many though!)
● Probably not a good idea to launch this many on your desktop CPU in 2024

○ 2 threads per 1 core is a ‘metric’ used by some
■ Threads have a cost to start and to join
■ Generally this is considered ‘costly’

● This brings up two interesting ideas
○ The first is whether ‘sequential’ execution is actually better in some cases
○ The second is -- how can we avoid ‘recreation’ of threads

■ i.e. the idea of a thread pool

(Aside) Sequential Execution is Sometimes
Better (and False Sharing)

79

Sequential (1/2)

80

● Comparing the sequential
performance

○ Get the correct answer (useful
for unit testing!)

○ Hmm, seems to run quite fast!
○ Less complicated code even

Sequential (2/2)

81

● In my benchmarks why
does the sequential
benchmark win?

○ Less time spinning up
threads which could take
100s or 1000s of cycles

○ Better cache locality

4 threads, constantly spinning up new threads

1 thread sequentially calling accumulate function

(Aside) How many threads to work together? (0/2)

82

● We can query with
std::thread::hardware_concurrency() a ‘good’
number of threads for our hardware.

○ Conventional wisdom is 1-2 active threads per core
-- measure for your system

● We also have to consider our ‘cache’
○ Basically -- we want to access (for my specific

architecture) no more than 64 bytes on independent
threads.

■ Accessing more than that ‘shares’ data that
must be evicted at least to the L3 cache, and
then ‘kept coherent’ amongst other cores.

■ This creates a great slow down!
○ https://devblogs.microsoft.com/oldnewthing/20230

424-00/?p=108085
○ https://en.cppreference.com/w/cpp/thread/hardwa

re_destructive_interference_size

https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-ar
chitecture.png

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png

(Aside) How many threads to work together? (1/2)

83

● Okay -- so I made the fix in regards
to accessing ‘64 bytes’ (16 ints, 4
bytes each) per thread

○ But we’re still slower!
■ (In fact, ~10 times slower now than

previous threads example, and
several orders of magnitude slower
than simple sequential code)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbkE)

https://www.youtube.com/watch?v=WDIkqP4JbkE

(Aside) How many threads to work together? (2/2)

84

● Note: Slight confession -- the
amount of work in our ‘thread’ is so
trivial we should never have used
threads in the first place

○ BUT -- I have to introduce these ideas to
you somehow in a slideshow :)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbkE)

https://www.youtube.com/watch?v=WDIkqP4JbkE

First Attempt at Reusable Threads with a
Thread Pool

Removing issue of thread creation

85

Thread Pools

86

● A thread pool is a ‘pool’ of threads that are allocated at startup
○ The ‘pool’ of threads is long lived, and ‘grab’ work as needed.

● I’m going to show a first attempt of a thread pool, but we’ll need
some mechanism to ensure our ‘threads remain alive’

○ Remember-- a std::thread (or std::jthread) is meant to execute one time.

Thread Pool - First Attempt (1/2)

87

● A first attempt to create a ‘struct
ThreadPool’ on the right

○ The end result is the same
○ The result is correct, but we get

similar performance when
compared to our prior data-parallel
example

○ But we’ve not yet solved our
problem of thread creation -- but
we are getting closer, and getting
some encapsulation.

● It’s important to notice
however, that in our array we
are still creating new threads
(using ‘move assignment’)

● But we can do better

Thread Pool - First Attempt (2/2)

88

● A first attempt to create a ‘struct
ThreadPool’ on the right

○ The end result is the same
○ The result is correct, but we get

similar performance when
compared to our prior data-parallel
example

○ But we’ve not yet solved our
problem of thread creation -- but
we are getting closer, and getting
some encapsulation.

● It’s important to notice
however, that in our array we
are still creating new threads
(using ‘move assignment’)

● But we can do better

So our goal is to figure out how to
keep threads alive, and then
communicate (i.e. signal) to them
that we have meaningful work to do

Topics Outline

89

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches / barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Synchronization Primitives

90

Synchronization

91

● Not all of our problems are going to
be ‘data parallel’

● And even in the cases where we do
have data parallelism, we cannot
afford to keep spawning new threads

● This is where we are going to need
more fine-grained synchronization!

Data Parallel - Each train/thread independent

Concurrent - Needs synchronization at station

Mutual Exclusion

92

Mutual Exclusion

93

● A std::mutex is our first synchronization tool.
○ It helps us synchronize in the sense that only 1 operation can happen while the

lock is held.
■ (Thus making that operation atomic)

● Thus a std::mutex enables ‘mutual exclusion’ to a block of code.
○ Thus, the operation is ‘atomic’ Analogy:

■ Think about having exactly 1 key to your home, and you always carry the key
with you.

■ Only the person who has the key can access the house.
■ When the person enters, they lock the door
■ When the person leaves, they can pass on the key to someone else to enter, who

will also lock the door when they enter.

std::mutex (1/2)

● Four new lines of code
○ #include <mutex> library
○ A global lock with std::mtuex
○ A lock() and unlock() call on

our global lock

94

std::mutex (2/2)

● Four new lines of code
○ #include <mutex> library
○ A global lock with std::mtuex
○ A lock() and unlock() call on

our global lock

95

std::mutex and mutual exclusion (1/4)

● So what our lock is doing
is providing access to only
one thread at a time
(mutually exclusive
access).

96

std::mutex and mutual exclusion (2/4)

● So what our lock is doing
is providing access to only
one thread at a time
(mutually exclusive
access).

○ This region is called the
‘critical section’ that is
protected by the lock.

○ Critical because we only
want one thread at a time to
enter and modify the shared
state in the program.

97

std::mutex and mutual exclusion (3/4)

● So what our lock is doing
is providing access to only
one thread at a time
(mutually exclusive
access).

○ This region is called the
‘critical section’ that is
protected by the lock.

○ Critical because we only
want one thread at a time to
enter and modify the shared
state in the program.

98

Critical section

thread 1
(obtains

lock)

thread n
(blocked)

...

(Aside) Problem with Threads -- Reading & Writing

● Data Race (or race condition)
○ Because data is shared--one or more thread

could be writing to the same piece of
memory at the same time

■ One thread may have read a ‘stale’
value right before the new ‘write’ to
the value

● The thread that then writes will
update +1 to a stale value,
overwriting the other threads
update

○ This makes the operation non-deterministic
■ i.e. We may get unexpected or

undefined results regarding the final
value based on a non-deterministic
order of operations

99

shared_value

Resulting value?

Depends on the
interleaving of

read/write operations

thread 1

reading and

writing to

shared-Value

th
re

ad
 n

re
ad

ing
 a

nd
 w

rit
ing

 to

sh
ar

ed
-V

alu
e

std::mutex and mutual exclusion (4/4)

● So what our lock is doing
is providing access to only
one thread at a time
(mutually exclusive
access).

○ This region is called the
‘critical section’ that is
protected by the lock.

○ Critical because we only
want one thread at a time to
enter and modify the shared
state in the program.

100

Critical section

thread 1
(obtains

lock)

thread n
(blocked)

...

What happens if the lock is never returned?

(e.g., equivalent to someone taking the only key for
your house, walking in, locking the door, then
flushing key down toilet)

Deadlock - lack of any progress for a thread (1/2)

● Deadlock
○ Is the prevention of a thread from ever

acquiring a resource
■ Thus, no forward progress can be made

(the thread waits forever)
○ This typically happens when a thread does

not release a lock, and goes out of scope or
otherwise terminates before releasing the
lock

101

Deadlock - lack of any progress for a thread (2/2)

● Fixing deadlock
○ Re-run code, and see if you are missing a pair

of lock/unlock
○ Static analysis techniques (i.e. thread

sanitizers) may detect deadlock before
compilation.

○ Otherwise deadlock has to be carefully
detected at run-time and fixed.

● Note: Deadlock is the most extreme
form of starvation

○ Starvation is when a thread cannot fairly
acquire access to a resource

102

Careful with std::mutex (1/2)

● So let’s make sure we have
a lock for every unlock
○ Our code is fixed

right?
○ (I agree this looks

correct)
● The problem is if another

programmer comes and
updates line 14

103

Careful with std::mutex (2/2)

● So let’s make sure we have
a lock for every unlock
○ Our code is fixed

right?
○ (I agree this looks

correct)
● The problem is if another

programmer comes and
updates line 14

104

Maybe our object can throw an exception, or a programmer updates to the following

So this code will also deadlock! Consider the more complex case where some
‘exception’ is thrown and we ‘forget’ to also release the lock in catch.

You could still remember to use a lock, but we have a better tool

Prefer lock_guard (C++11)
over lock/unlock (1/2)

● We instead of a lockGuard that
can ‘wrap’ an individual
std::mutex
○ The destructor of lock_guard

will take care of releasing
the lock

● std::lock_guard is a good
example of RAII
○ lock_guard takes ownership

of the lock, and when we
leave scope the mutex is
released (and the lock_guard
destroyed)

105

https://en.cppreference.com/w/cpp/thread/lock_guard

Prefer lock_guard (C++11)
over lock/unlock (2/2)

● We instead of a lockGuard that
can ‘wrap’ an individual
std::mutex
○ The destructor of lock_guard

will take care of releasing
the lock

● std::lock_guard is a good
example of RAII
○ lock_guard takes ownership

of the lock, and when we
leave scope the mutex is
released (and the lock_guard
destroyed)

106

std::lock_guard is only 3 member functions

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard

std::scoped_lock - Other mechanisms

● std::scoped_lock (C++17) -
○ An update to to lock_guard, but can acquire multiple locks at once

■ i.e., std::scoped_lock scoped_lock(mutex1,mutex2);
■ Prefer scoped_lock (over lock_guard) if you are able to utilize C++17.

107

https://en.cppreference.com/w/cpp/thread/scoped_lock

std::unique_lock - Other mechanisms

● std::unique_lock (C++11) -
○ A bit more powerful than lock_guard and

scoped_guard in that we can control locking and
unlocking

■ Used in conditon_variable (coming up)
○ Also follows RAII so we can use it safely.

108

https://en.cppreference.com/w/cpp/thread/unique_lock

There exist several other primitives you can find here

● https://en.cppreference.c
om/w/cpp/thread#Mutua
l_exclusion

○ e.g. timed_lock,
recursive_mutex,
shared_mutex, etc.

109

https://en.cppreference.com/w/cpp/thread#Mutual_exclusion
https://en.cppreference.com/w/cpp/thread#Mutual_exclusion
https://en.cppreference.com/w/cpp/thread#Mutual_exclusion

Topics Outline

110

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches
○ barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Condition Variables
A way to signal an event between 2 or more threads

111

Introducing Condition Variables

112

● Condition variables
○ Allows us to keep threads alive -- without having to spawn new threads,

■ We have discovered that otherwise creating threads is expensive
● The use case for condition variables

○ Dispatch work to worker threads periodically in order to do work on a subset of
data.

● Condition variables have two main methods:
○ wait and notify.

■ wait will stop the calling thread and put it to sleep
■ notify will awaken the thread

● Thus a condition variable is often used as an efficient ‘signaling
pattern’

Condition Variables Example

113

● A condition variable allows
us to otherwise ‘signal’ from
one function to the other
when there is work to be
done.

○ A common pattern is the
producer/consumer pattern

○ When data is ‘produced’ then a
signal is made that work is ready
to be acquired and processed by
a ‘consumer’ thread.

Observe that we need three parts:
1. a mutex (for synchronization)
2. a condition_variable

a. To ‘awaken’ another thread
3. a ‘variable’ (e.g. ready)

a. This variable will be protected
by the lock

1
2
3

Condition Variables Example (producer)

114

● The job of the producer
is to do some work on a
protected piece of data

○ (Note std::lock_guard with
locking safely through
RAII)

● It’s worth noting also at
this point that our
‘consumer’ will be
blocked until ‘notified’
(See notify_all)

Condition Variables Example (consumer)

115

● Here’s the consumer side
● The consumer ‘diligently

waits’ to acquire the lock
● The ‘wait’ portion

otherwise is where we
awaken when we are
notified by the producer.

○ If ‘ready’ is ‘false’ then we
release the lock and wait
here blocked -- but ‘we fall
asleep’ (rather than have a
spin lock)

○ If the condition is
otherwise true, then we
awaken when we’re
notified and acquire the
lock to proceed forward.

Condition_variable with thread pool -- what’s the point?

116

● We went from a data parallel problem to a more efficient ‘thread
pool’

○ The ‘data parallel’ problem may or may not need to reuse threads -- perhaps
crunching numbers is just fine

○ However -- it’s useful to know how to reimplement some of these systems.
● The point of the mechanism (i.e. a conditional variable) is to

understand this ‘signal pattern’ is going to be we now have a
mechanism to ‘block’ our threads when executing

○ They can then ‘pick up’ work, or be assigned new work when needed.
○ We could have implemented this with a ‘mutex’ and ‘while-loop’ as well, but it gets

clunky, and it’s inefficient to constantly check if we should advance (i.e. this is a
‘spin-lock’)

(Aside) condition_variable

117

● Tempting to just use a lock and flags, however that often results in
you implementing a ‘spin lock’

● condition_variable is more efficient than spin locks
○ A spin lock wastes lots of CPU cycles constantly running a loop

Topics Outline

118

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches / barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Semaphores
An even more primitive way to signal

119

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

with Mike Shah

120

(1/2) Let’s look at that word semaphore that was
in the talk today :)

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

with Mike Shah

121

(2/2) And we’d probably do well to define the
word as well.

Semaphore Wiki Definition

122

Semaphore (lit. 'apparatus for signalling'; from
Ancient Greek σῆμα (sêma) 'mark, sign, token' and
Greek -φόρος (-phóros) 'bearer, carrier')[1] is the
use of an apparatus to create a visual signal
transmitted over distance.[2][3] A semaphore can be
performed with devices including: fire, lights, flags,
sunlight, and moving arms.[2][3][4] Semaphores can
be used for telegraphy when arranged in visually
connected networks, or for traffic signalling such as
in railway systems, or traffic lights in cities.[5]

https://en.wikipedia.org/wiki/Semaphore

https://en.wikipedia.org/wiki/Ancient_Greek_language
https://en.wiktionary.org/wiki/%CF%83%E1%BF%86%CE%BC%CE%B1#Ancient_Greek
https://en.wikipedia.org/wiki/Greek_language
https://en.wiktionary.org/wiki/-%CF%86%CF%8C%CF%81%CE%BF%CF%82#Greek
https://en.wikipedia.org/wiki/Semaphore#cite_note-1
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Flag
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Semaphore#cite_note-4
https://en.wikipedia.org/wiki/Telegraphy
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Traffic_light
https://en.wikipedia.org/wiki/Semaphore#cite_note-5
https://en.wikipedia.org/wiki/Semaphore

A semaphore is a signal -- just like what we saw before

123

Semaphore (lit. 'apparatus for signalling'; from
Ancient Greek σῆμα (sêma) 'mark, sign, token' and
Greek -φόρος (-phóros) 'bearer, carrier')[1] is the
use of an apparatus to create a visual signal
transmitted over distance.[2][3] A semaphore can be
performed with devices including: fire, lights, flags,
sunlight, and moving arms.[2][3][4] Semaphores can
be used for telegraphy when arranged in visually
connected networks, or for traffic signalling such as
in railway systems, or traffic lights in cities.[5]

https://darkcoding.net/images/2009/05/pro1.jpg

Each signal here is a semaphore
-- ‘raising’ and ‘lowering’ of the
signal indicating that a train can or
cannot pass through

https://en.wikipedia.org/wiki/Ancient_Greek_language
https://en.wiktionary.org/wiki/%CF%83%E1%BF%86%CE%BC%CE%B1#Ancient_Greek
https://en.wikipedia.org/wiki/Greek_language
https://en.wiktionary.org/wiki/-%CF%86%CF%8C%CF%81%CE%BF%CF%82#Greek
https://en.wikipedia.org/wiki/Semaphore#cite_note-1
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Flag
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Semaphore#cite_note-4
https://en.wikipedia.org/wiki/Telegraphy
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Traffic_light
https://en.wikipedia.org/wiki/Semaphore#cite_note-5
https://darkcoding.net/images/2009/05/pro1.jpg

In our analogy (1/2)

124

● trains === worker threads
○ Trains spend time doing

something useful
(transportation)

● station === shared memory
○ This is where we ‘drop off’

(write) or ‘pick up’ (read) data
● signal === semaphore

○ A primitive for making sure our
shared resource (train tracks)
are owned by only 1 train at a
time.

In our analogy (2/2)

125

● trains === worker threads
○ Trains spend time doing

something useful
(transportation)

● station === shared memory
○ This is where we ‘drop off’

(write) or ‘pick up’ (read) data
● signal === semaphore

○ A primitive for making sure our
shared resource (train tracks)
are owned by only 1 train at a
time.

Let’s see a code example of
how to use a semaphore

binary_semaphore

126

● Provided is an example
of a binary_semaphore

● binary_semaphores hold
a value of 1 or 0
(available or unavailable)

○ It looks a lot like a
std::mutex, in that we
acquire/release -- but it’s
just a signal

○ No real concept of a thread
‘owning a lock’ for a scope

■ Could be used in
similar manner, but is
more lightweight.

Thread Safe Data Structures

127

ThreadSafe Queue

128

● At this point, it’s probably a
good idea to start building some
abstractions

● Here’s a very trivial thread-safe
queue we can make it safer or
faster later

○ e.g. Perhaps make this lockless
○ e.g. Perhaps ‘reader/writer’ pattern
○ e.g. Move any work that does not

require synchronization to before
the lock

● Note: This creates a ‘shared data
structure’

○ Depending on the task, we might
have to be careful that this
introduces a bottleneck

Topics Outline

129

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches / barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Latches and Barriers
Grouping threads

130

Latch

131

● I’ll demonstrate now a
std::latch with our thread
safe queue

● A latch is like a semaphore,
but it only counts down

○ It’s a ‘one time only’ data
structure otherwise (i.e. not
reusable)

● A std::barrier on the other
hand is reusable

Topics Outline

132

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches
○ barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Futures
A way to signal an event between 2 or more threads

133

Asynchronous Programming
Another form concurrency where execution can happen independently of the main program

flow

Asynchronous means that events happen ‘without synchronicity’ or ‘without order’.

134

std::async

135

● We can through away much of the signaling with std::async
● The idea is we execute a callable asynchronously, and we are only

blocked if we are awaiting the result (in a future)
○ Note: We will still need locks for shared resources however -- that remains true!

● Good way to use threads
○ Partition to I/O bound tasks and CPU bound tasks (or perhaps even GPU)
○ Goal is to avoiding blocking

std::async example

● #include <future>
● std::async

○ Promise and Future
■ Promise - Will hold

the result
■ Future - Where the

future result will be
stored

○ We are blocked at a.get()
until the value is returned.

136

https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/promise

A Concrete Example for std::async

● Blocking Input/Output (I/O)
○ I/O is any task where we are reading or

writing data.
■ e.g. network connection (e.g.

downloading data), disk load (e.g.
opening a file)

○ We can use a ‘background thread’ (i.e.,
std::async) execute to start loading that
data.

■ The application can then proceed
unblocked until it needs that data.

■ If we do not have the data ready
when we need, we are thus ‘blocked’
-- hence the term Blocking I/O

137

Data to be
loaded in
the
background
in a buffer

Data
loaded

Async I/O Simulation (1/5)

● “mocked” version of using
an async thread to load data

○ We spawn a ‘background
thread’ asynchronously using
std::async

○ Then in our ‘main loop’ we
continuously query to see if our
function has returned

○ (I have added a few artificial
sleeps to make it more
interesting)

138

Async I/O Simulation

● “mocked” version of using
an async thread to load data

○ We spawn a ‘background
thread’ asynchronously using
std::async

○ Then in our ‘main loop’ we
continuously query to see if our
function has returned

○ (I have added a few artificial
sleeps to make it more
interesting)

139

Here we’ll create a
background thread that
will execute with
std::async

I’ve been explicit in
setting up the parameters
and types.

Also, there is a ‘status’
that we’ll keep track of so
we know when a value
has been returned

Async I/O Simulation (3/5)

● “mocked” version of using
an async thread to load data

○ We spawn a ‘background
thread’ asynchronously using
std::async

○ Then in our ‘main loop’ we
continuously query to see if our
function has returned

○ (I have added a few artificial
sleeps to make it more
interesting)

140

Here we are reading in
‘bytes’ from a file.

Perhaps we are ‘streaming’
in some # of bytes from a
data source

Async I/O Simulation (4/5)

● “mocked” version of using
an async thread to load data

○ We spawn a ‘background
thread’ asynchronously using
std::async

○ Then in our ‘main loop’ we
continuously query to see if our
function has returned

○ (I have added a few artificial
sleeps to make it more
interesting)

141

In our main loop we will
check every 1 millisecond
the status of our future
value (which is wrapped in
a promise object)

Async I/O Simulation (5/5)

● “mocked” version of using
an async thread to load data

○ We spawn a ‘background
thread’ asynchronously using
std::async

○ Then in our ‘main loop’ we
continuously query to see if our
function has returned

○ (I have added a few artificial
sleeps to make it more
interesting)

142

Here’s what our execution
looks like

(Again--code available
from github)

packaged_task

143

● A packaged task is a
‘generalization’ or
building block for
std::async

● Provided in this example
I ‘package up’ some
work to be done in a
‘task’

○ The task is invoked, and
starts executing
concurrently

○ We’re blocked until the
result is otherwise ready

Topics Outline

144

● Transport Tycoon
● std:: thread and std::jthread

○ Launching and joining threads
○ Data Parallelism

● Synchronization Primitives
○ mutexes and mutex management
○ Condition Variables
○ semaphores
○ latches / barriers

● Promise and Futures
○ async
○ packaged_tasks

● Debugging concurrency
○ GDB and UDB.

Troubleshooting and Debugging Concurrency
Let’s see the program run!

145

Live GDB: Conditional Variable Demonstration

146

● Build Command
○ g++ -g -Wall -std=c++23 simple_cv.cpp -o prog -lpthread

● Execute
○ ./prog

● Debug
○ gdb --tui ./prog
○ (Can try ‘info threads’) to see the threads
○ (Still a good idea to setup ‘set scheduler-lock on’ as well)

Live Live Recorder and UDB: Demonstration

147

● Run and create a recording from Undo -- if you prefer instead of
gdb

○ /home/mike/Downloads/undo-7.2.1/live-record ./prog
○ Then use ‘rr’ or ‘udb’ to replay

■ /home/mike/Downloads/undo-7.2.1/udb
prog-3008963-2024-05-14T10-37-40.324.undo

● Try ‘start’ ‘layout src’ and then using ‘n’ to step through
● ‘info threads’ and other GDB knowledge works as well

○ Neat way to debug these things is with ‘live recorder’
■ https://docs.undo.io/UsingTheLiveRecorderTool.html

https://docs.undo.io/UsingTheLiveRecorderTool.html

Wrap-Up

148

We’ve done a quick tour of C++ concurrency

149

● Given the topics below there’s
much to learn -- and we have
not even gotten to measuring
performance.

● Concurrency is a deep and
important topic

○ The “free lunch [really] is over”
(Herb Sutter 20 years ago)

More Resources

150

Operating Systems: Three Easy Pieces

151

● Free book chapters on concurrency.
● https://pages.cs.wisc.edu/~remzi/OSTEP/

https://pages.cs.wisc.edu/~remzi/OSTEP/

152

Further resources and training materials

153

● Debugging Cheatsheet with UDB
○ https://undo.io/resources/undo-cheat-sheet/

● Time Travel Debugging - Greg Law - Meeting C++ 2023
○ https://www.youtube.com/watch?v=qyGdk6QMpMY

● Back to Basics: Debugging in Cpp - Greg Law - CppCon 2023
○ https://www.youtube.com/watch?v=qgszy9GquRs

● Back to Basics: Debugging in C++ - Mike Shah - CppCon 2022
○ https://www.youtube.com/watch?v=YzIBwqWC6EM

● Cool New Stuff in Gdb 9 and Gdb 10 - Greg Law - CppCon 2021
○ https://www.youtube.com/watch?v=xSnetY3eoIk

● CppCon 2018: Greg Law “Debugging Linux C++”
○ https://www.youtube.com/watch?v=V1t6faOKjuQ

● CppCon 2016: Greg Law “GDB - A Lot More Than You Knew"
○ https://www.youtube.com/watch?v=-n9Fkq1e6sg

https://undo.io/resources/undo-cheat-sheet/
https://www.youtube.com/watch?v=qyGdk6QMpMY
https://www.youtube.com/watch?v=qgszy9GquRs
https://www.youtube.com/watch?v=YzIBwqWC6EM
https://www.youtube.com/watch?v=xSnetY3eoIk
https://www.youtube.com/watch?v=V1t6faOKjuQ
https://www.youtube.com/watch?v=-n9Fkq1e6sg

Further resources and training materials

154

● Playlist on C++ concurrency on
YouTube:

○ https://www.youtube.com/playlist?l
ist=PLvv0ScY6vfd_ocTP2ZLicgqKnv
q50OCXM

● Slides from this talk will be
added to my website shortly.

https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

Further resources and training materials

155

Some useful talks on concurrency

● GCAP 2016: Parallel Game Engine Design - Brooke Hodgman
○ https://www.youtube.com/watch?v=JpmK0zu4Mts

● The MAW: Safely Multithreading the Deterministic Gameplay of
'Age of Empires IV'

○ (Slideshow below -- talk may be available on YouTube or with GDC vault access)
○ https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

● Multithreading the Entire Destiny Engine (GDC 2015)
○ https://www.youtube.com/watch?v=v2Q_zHG3vqg

● Sean Parent: Better Code Concurrency
○ https://www.youtube.com/watch?v=zULU6Hhp42w

https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the
https://www.youtube.com/watch?v=v2Q_zHG3vqg
https://www.youtube.com/watch?v=zULU6Hhp42w

Today’s Talk

156

● Today’s talk was inspired by a
book I read in graduate school
around 2015/2016

● It’s a free book by Allen Downey
on synchronization

○ https://greenteapress.com/wp/semap
hores/

● The only primitive needed is a
semaphore

https://greenteapress.com/wp/semaphores/
https://greenteapress.com/wp/semaphores/

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

with Mike Shah

18:30 - 20:30 ET
Thur. October 17, 2024

60 minutes with Q&A
Introductory/Intermediate
Audience 157

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you NYC++ 2024!
(Daniel, Nick, and Neel)

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

This slide is intentionally blank

158

Extra Slides

159

Our original motivation was about performance
(1/2)

● An interesting reality is that many
applications we write are I/O
bound

○ That means that we are waiting on
memory operations

○ The figure to the right shows that
while our processors have gotten
faster over time, accessing memory
remains orders of magnitude slower

■ Thus, we often cannot fetch data
at the rate that we process it.

160
Image source: https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf

Let’s try to answer our original
motivation about performance and

see how concurrency can help

Our original motivation was about performance
(2/2)

● An interesting reality is that many
applications we write are I/O
bound

○ That means that we are waiting on
memory operations

○ The figure to the right shows that
while our processors have gotten
faster over time, accessing memory
remains orders of magnitude slower

■ Thus, we often cannot fetch data
at the rate that we process it.

161
Image source: https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf

