Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice from both authors

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

NYC++ Meetup

() New York, NY, USA
Sg 1,376 members - Public group

g Organized by Daniel Katz and 3 others

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

18:30 - 20:30 ET Social: @MichaelShah

Thur. October 17, 2024 Web: mshah.io

60 minutes with Q&A Courses: courses.mshah.io

Introductory/Intermediate &3 YouTube .

Audience www.voutube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Code and Slides for the talk

e Code Located here: —= 0 MikeShah / Talks
https://github.com/MikeShah/T

alks/tree/main/2024/nycpp ¢> Code (Issues 19 Pullrequests () Actions

e Slides posted after talk at:

o www.mshah.io
e Live coding the examples from

this (if any) posted at:

o www.youtube.com/c/MikeShah

(I ¥ main ~ Talks/2024/nycpp/ (5

https://github.com/MikeShah/Talks/tree/main/2024/nycpp
https://github.com/MikeShah/Talks/tree/main/2024/nycpp
http://www.mshah.io
http://www.youtube.com/c/MikeShah

Your Tour Guide for Today

Mike Shah

e Current Role: Teaching Faculty at Yale University

o Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

o Available for:
o Contract work in Gaming/Graphics Domains
= e.g.tool building, plugins, code review
o Technical training (virtual or onsite) in Modern
C++, D, and topics in Performance or Graphics APIs

Fun: Web
° un: www.mshah.io
o Guitar, running/weights, traveling, video €3 YouTube

games, and cooking are fun to talk to me about! |bes/www.youtube.com/c/MikeShan
Non-Academic Courses

courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Thanks for spending your

evening with me on a
weeknight during the
workweek!

ZA

Y "\\}\\

/Q N \
//

/N “\\\\\\\\\N\\\\\\\\\\\\\\\\ AN

Web
www.mshah.io

@3 YouTube

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Railroads and Trains

A snapshot of some trains in Paris, just outside of the French C++
User Group (FRUG) meeting location

Transport Tycoon (1/2)

A favorite game I started
playing when I was 5-6
years old,

One of the goals of the
games is to build trains
that deliver goods between
stations

Transport Tycoon
Note: Shout out to OpenTTD which is actively updated if you
want to play for free!

https://www.openttd.org/

If you build more tracks,
then you can have more

trains

O

More trains means more
goods delivered, and
(potentially) more profit
The core mechanic of the
game is simple to
understand

| count 4 tracks

Transport Tycoon
Note: Shout out to OpenTTD which is actively updated if you
want to play for free!

https://www.openttd.org/

Now of course... (1/2)

You do have to manage
your resources -- the train
tracks especially can be
costly

o And you do not have
unlimited money to build
train tracks

Getbourne Transport will &
be sold of f or declared
bankrupt unless
performance increases
soon!

https://www.youtube.com/watch?v=ohmqaJNks2k4 9

https://www.youtube.com/watch?v=ohmqJNks2k4

Getbourne Transport will
be sold off or declared
bankrupt unless
performance increases

. ") it Soon! 0!1)3’ in troublel
C.MN.Gribble
(Manager) Getbourne Transport will §
= 1 be sold off or declared
bankrupt unless
performance increases
soon!

https://www.youtube.com/watch?v=ohmqaJNks2k4 10

https://www.youtube.com/watch?v=ohmqJNks2k4

Lrzzzludlegy ® Jaaa sl)l g g minala e
\ Transport company in troublel

']
Iy . Getbourne Transport will
') be sold off or declared

- bankrupt unless
performance increases

soon!

CM. GubNe
[(Manager)

Getbourne Transport will

be sold of f or declared
bankrupt unless

V| performance increases

AR soon!

https://www.youtube.com/watch?v=ohmqJNks2k4 11

https://www.youtube.com/watch?v=ohmqJNks2k4

One solution: Share the track with multiple trains (1/2)

e So a possible solution
then is to share one track

with multiple trains.

o Our station can be shared
otherwise between
multiple trains because
there are multiple unique
tracks within the station to
deliver the goods.

https://open-ttd.fandom.com/wiki/Train_Stations

https://open-ttd.fandom.com/wiki/Train_Stations

If you observe carefully,
you’ll notice signals exist
to coordinate the trains

o We don’t want any
accidents! https://open-ttd.fandom.com/wiki/Train_Stations

https://open-ttd.fandom.com/wiki/Train_Stations

Coordinating (i.e. Synchronizing) trains

Given more ‘signals’ we can create
more intricate train networks to

drop off more goods
o We’ve taken care to optimize the
amount of track we need to lay out as
well.
o In some cases we may add a few more
tracks -- but the idea is useful.

Of course -- we have to be a bit
more careful as we add more

signals, trains, and track
o Synchronizing and coordinating all of
these ‘resources’ takes careful thought!

Top: Transport Tycoon 14
Bottom: A different game called Factorio
httos://wiki.factorio.com/Tutorial: Train siagnals

https://wiki.factorio.com/Tutorial:Train_signals

Into today’s talk...

e Today we'’re going to do a tour
of fundamental concurrent
programming primitives

o It’s no more difficult to understand
than playing a game like Transport
Tycoon.

o And in some cases we will just

fundamentally want to avoid
synchronization

e Okay -- let’s dive into
concurrency

Top: Transport Tycoon 15
Bottom: A different game called Factorio
httos://wiki.factorio.com/Tutorial: Train siagnals

https://wiki.factorio.com/Tutorial:Train_signals

Today’s Talk

Abstract (1/2) The abstract that you read and enticed you to join me here!

Talk Abstract: Our world is concurrent and often we need to write software
that models our concurrent world. Luckily, the C++ Standard Template Library
(STL) has with each new release provided several mechanisms for writing
concurrent software. So whether you need the C++ STL concurrency library to
model a concurrent problem, or otherwise utilize concurrency for performance,
this talk will provide an overview of the concurrency support library. In this
talk, I will give a tour with code examples of the concurrency primitives
provided from C++11 to C++23. The audience will leave this talk knowing the
difference between mechanisms such as thread, jthread, mutexes, semaphores,
latches, and barriers. I'll also go one step further showing how to debug
concurrency bugs by isolating and recording the bugs with tools like GDB and
UDB. I Promise this talk in the Future will help you provide a foundation of C++

concurrency (oh yes, we'll talk about promises and futures as well!).
17

Topics for today are a tour of foundational

concurrency primitives
o As mentioned, there will be lots of
small code samples study after

Talk Abstract:

thread, jthread, mutexes,

semaphores, latches, barriers.
debug concurrency
GDB UDB. | Promise Future

18

Concurrency Motivation

Today I'll assume you know some of
the motivations of concurrency --

b .
here’s a short summary:
o Potential gain in performance Parallelism vs Concurrency (programming context) (1/4)
0] Perhaps models your problem ln a Concurrency is often used interchangeably with parallelism--so let’s separate
those two terms.
better/safer way
matters, and sometimes tasks have to wait on shared resources.

If you Want Some more motivation, I 2. Parallelism Definition: Everything happens at once, instantaneously
have previous resources linked that @

provide a longer and gentle é - ’Q
. . I€ > Pl) 437/1411 - Paralleism versus concurrency > & @ o 5]
introduction.

1. Concurrency Definition: Multiple things can happen at once, the order

Top
Back to Basics: Concurrency - Mike Shah - CppCon 2021
https://www.youtube.com/watch?v=pflC-kle4b0

Bottom

The what and the why of concurrency | Introduction to Concurrency in Cpp
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicggk
nvg500CXM J

https://www.youtube.com/watch?v=pfIC-kle4b0
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/watch?v=Fn0xBsmact4&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

(Aside) Better Code: Concurrency

e Now after today’s talk, you
can watch Sean Parent’s Better

Code: Concurrency talk

o The talk warns about using raw
synchronization primitives that
I'm teaching you today

m That’s okay -- I need to show
you the primitives, and then
you can build safer higher

level abstractions that your all of my goals are stated as a negative
What messemescmmm
team can use.

b
u (And that S Sort Of What Sean C++ Now Video: https://www.youtube.com/watch?v=32f6JrOPV8c (94 minutes)

: : Code::Dive Video: https:/voutu.be/QIHy8pXbnel?si=YVT Le7EBebY1Bzf&t=468 (78 minutes -- timestamp at
1s saying too) 7ty

Slides: https://sean-parent.stlab.cc/presentations/2016-08-08-concurrency/2016-08-08-concurrency.pdf

https://www.youtube.com/watch?v=32f6JrQPV8c
https://youtu.be/QIHy8pXbneI?si=YVT_Le7EBebY1Bzf&t=468
https://sean-parent.stlab.cc/presentations/2016-08-08-concurrency/2016-08-08-concurrency.pdf

Topics Outline

o—IranspertTyeoon

std:: thread and std::jthread

o Launching and joining threads
o Data Parallelism
Synchronization Primitives
o mutexes and mutex management
o Condition Variables
o semaphores
latches / barriers
Promise and Futures
o async
o packaged_tasks
Debugging concurrency
o GDB and UDB.

@)

21

Thread-Based Concurrency

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag
atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

22

#include <thread>
std: :thread

Concurrency support library (c++11)
thread — jthread (C++20)

atomic — atomic flag

atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables — Futures

latch (C++20) — barrier (C++20)

Safe Reclamation (C++26)

23

C++ Concurrency support library std::thread

std::thread

Defined in header <thread>
class thread; (since C++11)

he class thread represents a single thread of executionf. Threads allow multiple functions to execute concurrently.

Threads begin execution immediately upon construction of the associated thread object (pending any OS scheduling
delays), starting at the top-level function provided as a constructor argument. The return value of the top-level function
is ignored and if it terminates by throwing an exception, std: :terminate is called. The top-level function may
communicate its return value or an exception to the caller via std: :promise or by modifying shared variables (which
may require synchronization, see std: :mutex and std: :atomic).

std::thread objects may also be in the state that does not represent any thread (after default construction, move from,
detach, or join), and a thread of execution may not be associated with any thread objects (after detach).

No two std: :thread objects may represent the same thread of execution; std: :thread is not CopyConstructible or
CopyAssignable, although it is MoveConstructible and MoveAssignable.

https://en.cppreference.com/w/cpp/thread/thread

Thread Example - Launching a thread (1/2)

e #include <thread>
o std::thread

e Launching a std::thread is this el e
VO1Q "Ees INT X
idea of ‘fork-join parallelism’ and std: :printin(
. _ std::println(
with threads our memory is
shared int. maing) 1

o Note: There’s a key point of ‘is the std::thread myThread (&test,
problem large enough’ that it's
worth separating out the work that
we’ll want to touch on later.

myThread.join();

std::println(

https://en.cppreference.com/w/cpp/thread/thread
https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

mike@mike-MS-7B17:nycpp$./prog
Hello from our thread!
Argument passed in: 100
Hello from the main thread!

mike@mike-MS-7B17:nycpp$ g++ -g -Wall -std=c++23 threadl.cpp -0 prog -lpthread

Note: You may
need to
explicitly link in
the pthread
library on linux.

https://en.cppreference.com/w/cpp/thread/thread
https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

Visual execution of “Hello Thread” (1/13)

/joid test(int x) {
std::println(
std::printin(

int main() {
std::thread myThread(&test,
myThread.join();

std::println(

Main Thread

| test(int x) {
std::println(

ma:i_n() function where all std::printin(

C++ programs start.

main() {

We have 1 thread in our std::thread myThread(&test,

program (the main thread)
myThread.join();

std::printin(

’

Main Thread

oid test(int x) {
std::println(
std::println(
\We begin constructing > . main() ¢
Std . th read std: :thread myThread

myThread

myThread.join();

std::println(

Main Thread

)id test(int x) {
std::println(
std::println(

nt main() {

std::thread myThread

myThread.join();

std::println(

Main Thread

std::thread myThread(&test, 100)

Our new thread
will begin
executing it's
logical control
flow from the
‘test’ function.
separately from
main()

The thread will
start executing
immediately on
construction

(Remember,
threads shares
code and the
heap)

test(x) {
std::println(
std::println(

main() {

std: :thread myThread[&test,

myThread.join();

std::println(

’

So now we have two

Main Thread threads” executing

oid test(int x) {
std::println(
std::println(

P myThread

c main() {

std::thread myThread(&test,

myThread.join();

std::println(

’

Main Thread

std::thread myThread(&test, 100)

Both threads of execution are
concurrently alive!

(maybe executing simultaneously on separate
cores, or on the same one)

test(x) {
std::printn(
std::println(

myThread ,
1t main() {

Std..tnread myinread(&cest, B

myThread.join();

std::println(

’

https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice

e We just happen to execute the next line in main
thread
e myThread. join() tells the ‘Main Thread’ to wait on
myThread to finish.
o We ‘wait’ in the main thread, because this is
where we are calling join from

Main Thread

test(x) {
std::printn(
std::println(

std::thread myThread(&test, 100) myThread
main() {

std::thread myThread(&test,

myThread. join()

myThread.join();

std::println(

’

Main Thread

oid test(int x) {
std::printin(
std::println(

P myThread

nt main() {

Jl, std::thread myThread(&test,

myThread.join();

std::println(

.
’

Main Thread

void test(int x) {

std::printn(
std::println(

b

P myThread

int main() {

Jl, std::thread myThread(&test,

std::println
myThread.join();

std::println(

.
’

, When we return, our
Main Thread .
thread terminates.
Now our ‘main’ thread

can resume 0id test(int x) {
std::println(
std::println(

myThread

1t main() {

Il, std::thread myThread(&test,

std::println

myThread.join();

std::println(

Main Thread

oid test(int x) {
std::println(
std::println(

P myThread

nt main() {

Jl, std::thread myThread(&test,

std::println

myThread.join();

std::println(

’

Main Thread

P myThread

!

std::println

oid test(int x) {

std::println(
std::println(

int main() {

std::thread myThread(&test,)

myThread.join();

std::println(

We can also move our function into a lamba

e std::thread takes any
callable as the
parameter--so:

void test(int x) {

o lambdas, functions, functors, std::println();
. . std::println('
std::function, std::bind, etc. are Y
all fine to call from thread
int main() {
std;:thread myThread (&test, i

myThread. join();

std::println(Y

https://en.cppreference.com/w/cpp/named_req/Callable
https://en.cppreference.com/w/cpp/utility/functional/function
https://en.cppreference.com/w/cpp/utility/functional/bind

Same example as before -- but with a lambda!

e Same logic as before, but
instead of a function, I have
a lambda with 1 parameter
and a void return value IR Laab [1(int

. std::println(
e Note: std: :printin(

o If you want to pass a reference bi

int main() {

or some heap memory into a
thread use std::cref or std::ref
m Tutorial

std::thread myThread

myThread.join();

std: :println(

’

https://www.codementor.io/@jhadheeraj/thread-how-to-pass-arguments-to-a-thread-14thbsv9pi

Now how about if we wanted 10 threads (0/5)

Let’s create a

std: :vector<std: :thread>
o Then we’ll launch 10 threads
from a loop

It’s important however,
that we also join each of

the threads!
o Why?

m Because our main
thread of execution
could complete before
all std::thread’s
otherwise complete
their task.

7 int main() {

auto lambda = [J(int x){
std::cout <<
std::cout <<

+s

std::vector<std::thread> threads;

<< std::this_thread::get_id() << std::endl;
<< X << std::endl;

for(int 1=0; 1 < 10; i1++){
threads.push_back(std: :thread(lambda,i));
threads[i].join();

}

std::cout << << std::endl;

42

Now how about if we wanted 10 threads (1/5)

e So here we create each
of our threads and join
them

e Note:

o std::threadisnot
copyable (kind of
important if you think
about it) -- so they are
moved into the vector.

o Using a std::vector is a
common idiom to ‘hold
onto’ threads.

- int main() {

auto lambda = [J(int x){
std::cout << << std::this_thread::get_id() << std::endl;
std::cout << << X << std::endl;

+s

std::vector<std::thread> threads;

for(int 1=0; 1 < 10; i1++){
threads.push_back(std: :thread(lambda,i));
threads[i].join();

}

std::cout << << std::endl;

43

Now how about if we wanted 10 threads (2/5)

ike:concurrency$ g++ -std=c++17 thread3.cpp -o prog -lpthread
ike:concurrency$./prog

thread.get_1id:140658209871616 2o 1oy
Argument passed in:0 . auto lambda = [J(int x){

thread.get_1d:140658209871616 std::cout << << std::this_thread::get_1d() << std::endl;
Argument passed in:1 std::cout << << X << std::endl;
thread.get_1d:140658209871616 };

Argument passed in:2

int main() {

VoOoO~NOTULDE WN K

thread.get_id:140658209871616 std::vector<std::thread> threads;

Argument passed in:3 for(int 1=8; i < 18; is+){
thread.get_ld:149658209871616 ¢ threadstpush_baék(std::thread(lambda,i));
Argument passed in:4 threads[i].join();
thread.get_1d:140658209871616 ’

Argument passed in:5
thread.get_1d:140658209871616 tinue exec the :
Argument passed in:6 std::cout << << std::endl;
thread.get_1d:140658209871616

Argument passed in:7) return 0;

thread.get_1d:140658209871616

Argument passed in:8

thread.get_1d:140658209871616

Argument passed in:9

ello from the main thread!

e The result seems a little
strange...anyone see the

problem?
o (Hint: Look at arguments
ike:concurrency$ g++ -std=c++17 thread3.cps) -1ﬁ passed In OUtPUt)

ike:concurrency$./prog
thread.get_1id:140658209871616
Argument passed in:0 10 lambda = [](int x){

thread.get_1d:140658209871616 11 std: :cout << << std::this_thread::get_1d() << std::endl;
Argument passed in:1 i std::cout << << X << std::endl;
thread.get_1d:140658209871616 13 };

Argument passed in:2 14

thread.get_id:140658209871616 %3 std: :vector<std::thread> threads;

Argument passed in:3 o

it 1.7 for(int 1=0; 1 < 10; i1++){
thread.get_ld.149658209871616 18 threads.push_back(std: :thread(lambda,i));
Argument passed in:4

threads[1]. jotn();
thread.get_id:140658209871616 w 3 SLdatn0

Argument passed in:5
thread.get_1id:140658209871616
Argument passed in:6
thread.get_1d:140658209871616
Argument passed in:7
thread.get_1d:140658209871616
Argument passed in:8
thread.get_1d:140658209871616
Argument passed in:9

ello from the main thread!

std::cout << << std::endl;

E}

ike:concurrency$./prog
thread.get_1id:140658209871616
Argument passed in:0
thread.get_1d:140658209871616
Argument passed in:1
thread.get_1d:140658209871616
Argument passed in:2
thread.get_1d:140658209871616
Argument passed in:3
thread.get_1d:140658209871616
Argument passed in:4
thread.get_1d:140658209871616
Argument passed in:5
thread.get_1id:140658209871616
Argument passed in:6
thread.get_1d:140658209871616
Argument passed in:7
thread.get_1d:140658209871616
Argument passed in:8
thread.get_1d:140658209871616
Argument passed in:9

ello from the main thread!

ike:concurrency$ g++ -std=c++17 thread3.cpp

By joining our threads immediately after
launching our code, we've effectively made our
program sequential (i.e. no performance gain)

This is a form of over-synchronization
o We have serialized something that we want to happen

concurrently
x){
sta.s << std::this_thread::get_id() << std::endl;
std::cout << X << std::endl;
1

std::vector<std::thread> threads;

for(i=0; 1 < 10; 1++){
threads.push_back(std: :thread(lambda,i));
threads[i].join();

std::cout << << std::endl;

s

https://aws.amazon.com/blogs/devops/detecting-concurrency-bugs-with-amazon-codeguru/

Let's try debugging our over-synchronization
error

Debugging the initial problem

e Debugging concurrent programs is not always easy

e I'm going to use live-recorder here
o https://undo.io/udb-free-trial/
e Why?
o It allows me to ‘capture’ one specific execution of my concurrent program run

o This can be handy later on if we don’t necessarily have deterministic execution
m In this specific case of course, we just so happen to :)

48

https://undo.io/udb-free-trial/

Potential debugging workflow

1. First compile with debug symbols:

2. Then run your program as normal

1. Note: Need sudo permissions to save recording

3. Then replay

b. Can debug as normal

1. eg.
1. b main
2. next

3. info threads

49

Debug / Live Recorder / Replay (Backup Animation)

Something about this just makes me

Debug / Live Recorder / Replay (uly happy 3

| can also store these replays too -- |
gave some to students before and
told them to find the bug.

(Aside) Potential debugging workflow

1. Review:

2. Commands to try otherwise
a. layout src (tui mode)
b. b main
Cc. next
d. reverse-next

52

mike:concurrency$ g++ -std=c++17 thread3_fix.cpp -o prog -lpthread
mike:concurrency$
mike:concurrency$./prog
thread.get_1d:139995667298048
Argument passed in:0
thread.get_1d:139995507902208
Argument passed in:3
thread.get_id:thread.get_1d:139995642119936
Argument passed in:4
thread.get_1d:139995633727232
Argument passed in:5
139995650512640

Argument passed in:2
thread.get_1d:139995658905344
Argument passed in:1
thread.get_1d:139995608549120
Argument passed in:8
thread.get_1d:139995532752640
Argument passed in:9
thread.get_1d:139995616941824
Argument passed in:7
thread.get_1d:139995625334528
Argument passed in:6

Hello from the main thread!

Here’s the fix -- move ‘join’ to ‘unblock’ (i.e.
avoid waiting) while spawning new threads

Observe the new output, the thread
exeCUtion iS OUt Of Order nOW (which is expected when 10

threads are simultaneously executed, the threads are scheduled according to OS)

main() {

lambda =
std: :cout
std::cout <

<< std::this_thread::get_id() << std::endl;
<< X << std::endl;

b
std::vector<std:: > threads;

for(int 1=0; 1 <) {
threads.push_ba ((std::thread(lambda,i));

for(int i=0; 1 < 10; i1++){
threads[i].join();

std::cout <<

e So again -- remember what ‘join’ does
o The calling thread is blocked, until all of threads[i] are complete

at line 24

mike:concurrency$ g++ -std=c++17 thread3_fix.cpp -o pro.
mike:concurrency$
mike:concurrency$./prog
thread.get_1d:139995667298048
rgument passed in:0
thread.get_1d:139995507902208
rgument passed in:3
thread.get_id:thread.get_1d:139995642119936
rgument passed in:4
thread.get_1d:139995633727232
rgument passed in:5
139995650512640
rgument passed in:2
thread.get_1d:139995658905344
rgument passed in:1
thread.get_1d:139995608549120
rgument passed in:8
thread.get_1d:139995532752640
rgument passed in:9
thread.get_1d:139995616941824
rgument passed in:7
thread.get_1d:139995625334528
rgument passed in:6
Hello from the main thread!

in() {

lambda = [](x){
std::cout << << std::this_thread::get_id() << std
std::cout << << X << std::endl;

'vector<std::thread> threads;

t 1=0; 1 < 10; i++){
1reads.push_back(std: :thread(lambda,1));

for (i i=0; 1 < 10; 1++){

Ithreads[lJ.JOIn();l

}

std::cout <<

#include <thread>
std::jthread

Concurrency support library (c++11)
thread —|jjth read (C++20)
atomic — atomic Tlag
atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

55

C++20-std::jthread (1/2)

e std::jthreadis similarto
std::thread, but an automatic
request to join on destruction is
I JALG'1équa ; [1(5W1'¥)§s <std::thread::id>{}(std: :this read::get i
made USIﬂg RA” stdpringﬁ(td: :hash<std::thread::id>{}(std::this thread::get id());
o Note: You can still join’ manually if , R
you want more explicit control

o std::jthread helps ensure we do not

forget to join otherwise! int i=0; i < 10; i++){
threads.push back(std::jthread(lambda,i));
}

int main() {

std::printin(

56

https://en.cppreference.com/w/cpp/thread/jthread/request_stop

mike@mike-MS-7B17:nycpp$ g++ -std=c++23 jthread.cpp -o prog -lpthread & ./prog
thread.get id:12461861030574371588
Argument passed in:0
thread.get_id:10223430736409425194
thread.get 1d:9711323981635490620
Argument passed in:1
Argument passed in:2
thread.get id:13201395818657114585 int main() {
Argument passed in:4 7
thread.get_id:13903581504720946448 auto lambda = [1(int x){
aimmcielg oot size t tid = std::hash<std::thread::id>{} (std: :this_thread::get_id());
Argument passed in:5 std::printlin(, tid);
thread.get id:13123628352735147900 std::println(i X))
Argument passed in:6 ks
Hello from the main thread!
thread.get 1d:12826171936956292179
Argument passed in:7
thread.get_1id:2071190819905647772
Argument passed in:8
thread.get id:1575587564839372336
Argument passed in:9 _ (int 1=0; i< ;i) {

threads.push back(std::jthread(lambda,i));

|std::vector<std::jthread> threads; |

std::printin(

Launching threads was fun -- let’s launch 1000s of threads!

Teams of
threads

Data Parallelism

jthread 4

LILIE2 2 R e

. b o oy ULIZ 2 AR SR - - -5 T - oy T e . = -5 T - T
. ; z
Launching threads was fun -- let’s launch 1000s of threads! ;
NN | PR L T 2 IS 5 el -' TR £X09 LT SOR e d (‘-* LS £X09 iL- T4 PR -
! ; ! ; i ! |
LS AUD:. . T T T T T T T —
e z " z
29 F ke = "' £ L e F ke = 9y u‘, ,@F\ o .. .

Thread Parallelism

e We'rein a pretty good spot in

our introduction to threads
o Each std::thread or std::;jthread
cherrily does some independent
work

e This is effectively like each
train executing on its own
rail as we started out

e But what if we need to

compute some final result?
o We launch many threads -- and
have them work together as a
team of threads
o (nextslide)

jthread1

Main Thread

jthread2

jthread3

Main Thread

jthread4

60

Thread Team (0/9)

Let’s do a more interesting
problem where we spawn
multiple threads -- and have
them ‘collaborate’ on a
result

Thread Team (1/9)

The task: increment unique

indices in a global shared
array.

Approach: Launch multiple
threads that work on
separate indices

Thread Team (2/9)

Main Thread jthread2

Main Thread
jthread3

jthread4

From the main thread we’ll ‘spawn’ 4 threads in a
loop -- push them into a vector (like previous) and
have them work on separate blocks of shared
memory

Main Thread

Thread Team (3/9) jthread &
7
Jthread4

Below is an example of ‘shared memory’

Shared memory
(i.e. a big array)

Thread Team (4/9)

jthread2

jthread3

Main Thread Main Thread

jthread4

e Each thread writes to separate indices in a shared
heap-allocated block of memory

o (Remember threads share heap and global

memory, but have own local stack memory)

jthread1 e read/write this block

jthread?2 read/write this block

jthread3 read/write this block
jthreadd oemmemmmm: read/write this block

Thread Team (5/9) :

11 std::array<int, > shared global data;

e Here is full resulting code Gl Pl
o We’ll look at each chunk in the

7 std::memset(shared global data.data(), 0, sizeof(int)*shared global data.size());
next few slides =
2 AdditionWorker= [](t index, jobSize){
2 (t 1 = index*jobSize; i < (index+1) * jobSize; i++){

25 shared global data[i] += 1;

1 std::vector<std::jthread> threads;

for(int j=0; j < 5; j++){

r(i=0; 1 < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,64));
}
std::cout << << threads.size() << std::endl;
std::cout << << std::endl;

45 for(t i=0; i < shared global data.size(); i++){

s{d::cout << shared _global data[i] << .

std::cout << std::endl;

RN N6 asven i b ikt o b2t PETREIN v 1 oy

Thread Team (6/9)

11 std::array<int, > shared_global_data;
nt main() {

std: :memset(shared global data.data(), ©, sizeof(int)*shared global data.size());

illstd::array<.r', > shared*global*data1

t main() {

|std::memset(shared global data.data(),

eof(int)*shared global data.size());

Here we initialize a chunk of shared memory

uto AdditionWorker= [](size T index, size T jobSize)({

for(size t i = index*jobSize; i < (index+1) * jobSize; i++)({
shared global data[i] += ;
}

};

for(size i = index*jobSize;
h dglbldt[]+=;
}

Next we create a ‘worker thread’ that will execute --
observe:

e An ‘index’and ‘jobSize’ provides the ‘range’ (start
and finish) of where we’ll access the array.
o Care is taken so we do not overlap

We then do ‘5’ iterations with ‘4’ worker threads

std::vector<std::jthread> threads;

for(int j=0; j < 5; j++){

for(int i=0; i < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,04));

/

T enab T

std::vector<std::jthread> threads;

for(int j=0; j < 5; j++){

for(i=0; i < 4; i++){
threads.push back(std::jthread(AdditionWorker,i,));
}
}

Thread Team (9/9)

nain() {

(S RO, RN, U, G, RO, RO, RO, O, R C, R, RO, G, R C, R, R0, RO, U, R, RO, O, R, R, 0, R,

mike@mike-MS-7B17:nycpp$ g++ -std=c++23 team.cpp -0 prog -lpthread
mike@mike-MS-7B17:nycpp$ time ./prog
threads.size: 20
Job completed -- in main thread and printing results
Th 1 i
o eprogramworisas [9] 5[2] 5[31 5[41 5T 51 5[6 5(71 51 8 5[o1 5 18]
[11] 5[12] 5[13] 5[14] 5[15 5[16] 5[17] 5[18] 5[19] 5 [20]
[21] 5[22] 5[23] 5[24] 5[25] 5[26] 5([27] 510[28] 51291 571 30]
eXpeCted [31] 5[32] 5033 5[34] 5[35] 5[36] 5[37] 5[38] 5139 5] 40]
. [41] 5[42] 510431 5[44] 5[45 5[46] 5[47] 5[48] 5[49] 5 [50]
[51] 5[52] 5053 5[54 5[55 5[5] 5([57] 5[58 51[59] 51 60]
© le. We successfully [61] 5[62] 5[63] 5[64] 5[65 5[66] 5[67] 5[68 5[69] 5[70]
. P [71] 50721 5073 5074 5075 5[76] 50771 5078 5179 51 80]
increment each value ‘5 [81] 5[8] 5[8] 5081 5[8] 5[8] 5[87] 5[8] 5[8] 5[90]
. . .. [91] 5[92] 5[93] 5[94] 5[95 5[9] 5[97] 5[98] 5[99 5 [100]
times (Printing out the 256, [161] 5 [162] 5 [163] 5 [184] 5 [185] 5 [1@6] 5 [167] 5 [108] 5 [109] 5 [116]
£ 11 h %111} 5 {112} 5 {113} 5 %114} 5 {115} 5 {116} 5 {117} 5 {118} 5 {119} 5 Elze{
121] 5 [122] 5 [123] 5 [124] 5 [125] 5 [126] 5 [127] 5 [128] 5 [129] 5 [130
ves Sequentla y at the [131] 5 [132] 5 [133] 5 [134] 5 [135] 5 [136] 5 [137] 5 [138] 5 [139] 5 [140]
end) [141] 5 [142] 5 [143] 5 [144] 5 [145] 5 [146] 5 [147] 5 [148] 5 [149] 5 [150]
[151] 5 [152] 5 [153] 5 [154] 5 [155] 5 [156] 5 [157] 5 [158] 5 [159] 5 [160]
[161] 5 [162] 5 [163] 5 [164] 5 [165] 5 [166] 5 [167] 5 [168] 5 [169] 5 [176]
[171]1 5 [172] 5 [173] 5 [174] 5 [175] 5 [176] 5 [177]1 5 [178] 5 [179] 5 [180]
[181] 5 [182] 5 [183] 5 [184] 5 [185] 5 [186] 5 [187] 5 [188] 5 [189] 5 [190]
[191] 5 [192] 5 [193] 5 [194] 5 [195] 5 [196] 5 [197] 5 [198] 5 [199] 5 [200]
[201] 5 [202] 5 [203] 5 [204] 5 [205] 5 [206] 5 [207] 5 [208] 5 [209] 5 [216]
[211] 5 [212] 5 [213] 5 [214] 5 [215] 5 [216] 5 [217] 5 [218] 5 [219] 5 [220]
[221] 5 [222] 5 [223] 5 [224] 5 [225] 5 [226] 5 [227] 5 [228] 5 [229] 5 [230]
[231] 5 [232] 5 [233] 5 [234] 5 [235] 5 [236] 5 [237] 5 [238] 5 [239] 5 [240]
[241] 5 [242] 5 [243] 5 [244] 5 [245] 5 [246] 5 [247] 5 [248] 5 [249] 5 [250]
[251] 5 [252] 5 [253] 5 [254] 5 [255] 5
real 0mo.002s
user Om0.000s
Sys Om0.003s

Thread Team Round 2 (1/5)

Great -- now let’sdo areal
test on a “real” workload --
I’'ve modified the program

to now run ‘50000’ times
o and... (next slide)

2 +--

6 lines: g++ -std=c++23 team.cpp -0 prog -lpthread

std::array<int, > shared_global data;
int main() {
std::memset(shared global data.data(), ©, (int)*shared global data.size());
auto AdditionWorker= [](size t index, size t jobSize){
(size t i = index*jobSize; i < (index+1) * jobSize; i++){

shared global data[i] += 1;

std::vector<std::jthread> threads;

(int i=0; i < 4; i++){
threads.push_back(std::jthread(AdditionWorker,i,64));
}

}
std::println(, threads.size());

(int i=0; i < threads.size();i++){ threads[i].join(); }
std: :printin()i
(size t i=0; i < shared global data.size(); i++){
std::print(,1,shared_global data[i]);

(i%10==0){std::println();}

}
std::println();

’

g++ -std=c++23 team.cpp -0 prog -lpthread

6 lines:

Thread Team Round 2 (2/5)

Great -- now let’sdo areal
test on a “real” workload --
I’'ve modified the program

to now run ‘50000’ times

and ... (next slide)
CRASH

O

O

mike@mike-MS-7B17:nycpp$ g++ -std=c++23 team50000.cpp -o prog -lpthread

mike@mike-MS-7B17:nvcpop$ time _/nrog

terminate called after throwing an instance of 'std::system error'
what(): Resource temporarily unavailable

Aborted (core dumped)

real Om0.658s
user 0m0.094s
sys Omo.809s

mike@mike-MS-7B17:nycpp$

std::array<int, 256> sharéd_global_data;

int main() {

std;:memset(sharediglobalgdata.data(), (int)*shared global data.size());

auto AdditionWorker= [](size ? index, size t jobSize){

t i = index*jobSize; i < (index+1) * jobSize; i++){
shared global data[i] += 1;

(size

std::vector<std::jthread> threads;

(int i=0; i < 4; i++){
threads.push_back(std::jthread(AdditionWorker,i,
}

}
std::println(

));
, threads.size());
(;m{ i=0; i < threads_size();i{+){ threads[i].join(); }

std: :printin()i

(size t i=0; i < shared global data.size(); i++){
std::print(,1,shared_global data[i]);
(i%10==0){std::println();}

}
std::println();

’

6 lines: g++ -std=c++23 team.cpp -o prog -lpthread

std::array<int, 256> sharéd_global_data;
int main() {

std;:memset(sharediglobalgdata.data(), . (int)*shared global data.size());

o What is the issue? (Hint highlighted) T

auto AdditionWorker= [](size ? index, size t jobSize){

(size t i = index*jobSize; i < (index+1) * jobSize; i++){
shared global data[i] += 1;

};

std::vector<std::jthread> threads;

(int j=0; § < RS OR

mike@system76-pc:~/Talks/2024/french cpp user group frug$ g++ -g -W § 1
all -std=c++23 team>0000.cpp -0 prog -lpthread (int i=0; 1 < 4; i++){) » .
mike@system76-pc:~/Talks/2024/french_cpp_user_group_frug$ time ./pr thkeads. push. hack(srdy: JtnreadiAdaItIonNorker, 1,64)) ;

}
0g 1
terminate called after throwing an instance of 'std::system error' std::printin(, threads.size());
Phat(): Resource temporarily unavailable ‘
AboTTed (core gasped} (;n;‘; 1=0: 1< threads.size();iH){ threads[i].join(); }
real OmO.562s ¢
user Om0O.060s std::println()

Sys Om0O.667s

mike@system76-pc:~/Talks/2024/french_cpp_user_group frugs [] (Blee T @ 1 < Sharfil Global dat: S12elys LERH

std::print(,1,shared_global data[i]);
(i%10==0){std::println();}

}
std::println();

’

Thread Team Round 2 (4/5)

o What is the issue? (Hint highlighted)
o Answer: Too many threads created
on stack at once for my cpu
m [have created 50,000%4 threads
for one process.
e The threads don’t
terminate after all, until
‘vector’ destructor is
called
e (And thatisend of
program)
Note: With other thread
libraries, we also need to be
aware of what could happen
when resizing containers
e (std::ithreads are
non-copyable, which is
good and prevents weird
behavior).

2 +-- 6 lines: g++ -std=c++23 team.cpp -0 prog -lpthread

std::array<int, > shared_global data;

int main() {
std::memset(shared global data.data(), ©, (int)*shared global data.size());
auto AdditionWorker= [](size t index, size t jobSize){

(size t i = index*jobSize; i < (index+1) * jobSize; i++){
shared global data[i] +=

(int j=0; j < v o

(int i=0; i < 4; i++){
Threads.pusn_pack(std: :jthread (AdditionWorker,i,64));

}

}
std::println(, threads.size());
(int i=0; i < threads.size();i++){ threads[i].join(); }

std::println()i
(size t i=0; i < shared global data.size(); i++){
std: :print(,i,shared global data[il);
(i%10==0){std: :println();}

}
std::println();

Thread Team Round 2 (5/5)

] en load executable: file ./prog

b37ifj>15

m Observe that ‘threads vector
‘never shrinks!

m Note: threads are ‘moved’ instead
of copied, but we still have a large
‘move’ to do -- plus our stack of
‘functions’ potentially grows very
fast!

set scheduler-locking on

m Mode needs to be ‘on’

m This pauses all threads when one
stops -- easier to debug

display threads.size()

m Updates when we push into size
Press ‘c’ for continue a few times
call malloc_stats()

m Gives us some idea of memory
allocations (at least for the heap
allocations with threads)

2 +-- 6 lines: g++ -std=c++23 team.cpp -0 prog -lpthread

std::array<int, > shared_global data;

int main() {
std::memset(shared global data.data(), ©, (int)*shared global data.size());
auto AdditionWorker= [](size t index, size t jobSize){

(size t i = index*jobSize; i < (index+1) * jobSize; i++){
shared global data[i] += 1;

std::vector<std::jthread> threads;

(int j=0; j < RSN
(int i=0; i < 4; i++){
threads.push_back(std::jthread(AdditionWorker,i,64));
}
}
std::println(, threads.size());
(int i=0; i < threads.size();i++){ threads[i].join(); }
std: :println().d
(size t i=0; i < shared global data.size(); i++){
std::print(,1,shared_global data[i]);

(i%10==0){std: :println();}

}
std::println();

’

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Asynchronous-and-non_002dstop-modes.html

Thread Team Fixed (1/2)

The fix itself was quite
simple -- but could be
tricky to find!

o Ideais to move ‘threads’
into scope of each iteration
Would I have found this bug
if I only launched 50

threads? How about 10007?
The answer is it’s system
dependent on the thread
limits

2 +--

std::array<int,

6 lines: g++ -std=c++23 team.cpp -0 prog -lpthread

> shared global data;

int main() {

std;:memset(sharediglobalidata.data(), . (int)*shared global data.size());

auto AdditionWorker= [](size t index, size t jobSize){
(size t i = index*jobSize; i < (index+1) * jobSize; i++){
shared_global data[i] += 1;
}
I H
int §=0. j b
|std::vector<std::jthread> threads;
(int 1=0; i < 4; i++){

threads.push back(std::jthread(AdditionWorker,1i,64));

}
std::println(, threads.size());

}

std::printin():
(size t i=0; i < shared global data.size(); i++){
std: :print(,1,shared global data[i]);

(i%10==0){std: :println();}

}
std::printin();

) ()) a) () .- .
2acC avallaple O C
opeld O C
-
O /\ a > > a
dicates 8mb o 5 o
O ele a2’ TO ore O

mike@system76-pc:~$ cat /proc/sys/kernel/threads-max
512511

mike@system76-pc:~$ ulimit -s

8192

mike@system76-pc:~$ D

11 std::array<int, > shared_global _data;
main() {
std::memset(shared_global data.data(), ©, sizeof(int)*shared global data.size());
AdditionWorker= [](size t index, siz jobSize){

{ i = index*jobSize; i < (index+1) * jobSize; i++){

sﬁéredgglobal_data[i] = 1;

}
}:
for(j=0; j < i i) o
std::vector<std::jthread> threads;
r(int i=0; i < 4; i++){
threads.push _back(std::jthread(AdditionWorker,i,64));
}
}
std::cout << << std::endl;
r(size i=0; i < shared_global data.size(); i++){
std::cout << shared_global _data[i] << :
}

std::cout << std::endl;

i

Can I launch 50,000 threads with my limit?

e Searching:nl /etc/systemd/system.conf
o I'm allowed to have 15% of my maximum allowable threads allocated to a process on Ubuntu
22.04
o (This seems reasonable -- | could for instance launch 25,000 threads no problem -- probably
way too many though!)
e Probably not a good idea to launch this many on your desktop CPU in 2024
o 2 threads per 1 core is a ‘metric’ used by some
m Threads have a cost to start and to join
m Generally this is considered ‘costly’

e This brings up two interesting ideas

o The first is whether ‘sequential’ execution is actually better in some cases
o The second is -- how can we avoid ‘recreation’ of threads
m i.e. the idea of a thread pool

78

(Aside) Sequential Execution is Sometimes
Better (and False Sharing)

Sequential (1/2) :

11 std::array<int > shared global data;

e Comparing the sequential
performance

o Get the correct answer (useful
for unit testing!)

main() {

std: :memset(shared global data.data(), izeof(int)*shared global data.size())

AdditionWorker= [](si t index, ¢ jobSize){

Hmm, seems to run quite fast! 2 i
Less complicated code even

4 i = index*jobSize; i < (index+1) * jobSize; i++){
shared_global data[i] += 1;

mike@system76-pc:~/Talks/2024/french_cpp_user_group_frug$ g++ -g -Wall -std=c++ 7
23 sequential.cpp -o prog -lpthread SEL AR 5 = 4 j‘++) {
mike@system76-pc:~/Talks/2024/french_cpp_user_group frug$ time ./prog
Job completed -- in main thread and printing results
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5
0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50 € ; : ¢ .
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500 2 r(int i=0; i < 4; i++){
00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 34 AdditionWorker(i,64);
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5
0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500
00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 :
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 ¥ o

50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 std::cout << << std::endl
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5 L

0000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50 11 il ; 3

000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 500 : (si 1597 L = sharedfglobalfda?a.51ze(), i++){

00 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000 std::cout << shared global data[i] << :

0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5 + std::cout << std::endl;

0000 50000 50000 50000 50000 50000 % return 0;

real 0mo.028s
| user 0mo.027s
sys 0m0.000s
mike@system76-pc:~/Talks/2024/french_cpp_user_group_frugs$ D

mike@system76-pc:~/Talks/2024/french_cpp_user _group_ frug$ time ./prog
Job completed -- in main thread and printing results
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
In my benchma]_‘:ks Why 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
. 0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
dOeS the Sequentlal 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
. 0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
benchmarl§ Wln? 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50

000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

o Less time spinning up ceer ono 3008 4 threads, constantly spinnin new threads
R user mu. S) I I u W
threads which could take sys __oml.80ds y sp g up

RE@SYSLEeM/0-pC:~/ lalks/ 024/ Trench_cpp_user_group 1rugs g++ -g -Wall -std=c++Z3 sequential

.Cpp -0 prog -lpthread
1OOS or 10008 Of CYCleS mike@system76-pc:~/Talks/2024/french_cpp_user _group_ frug$ time ./prog
. Job completed -- in main thread and printing results
Igegiftear (351(31165 1()(:2111t§] 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000
0 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50
000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000

real 0m0.028s

ver emo.027¢| 1 thread sequentially calling accumulate function

(Aside) How many threads to work together? (0/2)

Quad-core Processor

e We can query with

std::thread::hardware concurrency() a ‘good’ Core 0 Core1 Core2 Core 3
number of threads for our hardware.
o Conventional wisdom is 1-2 active threads per core L L1 L1 L1
-- measure for your system
e We also have to consider our ‘cache’ o =
o Basically -- we want to access (for my specific
architecture) no more than 64 bytes on independent 13
threads.
m Accessing more than that ‘shares’ data that
must be evicted at least to the L3 cache, and
then ‘kept coherent’ amongst other cores. Main Memory
m This creates a great slow down!
o https://devblogs.microsoft.com/oldnewthing/20230 S 207501192 s S

424-00/?p=108085
o https://en.cppreference.com/w/cpp/thread/hardwa
re destructive interference size

82

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://devblogs.microsoft.com/oldnewthing/20230424-00/?p=108085
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png
https://www.researchgate.net/publication/322994264/figure/fig4/AS:599034075029513@1519832261760/A-three-level-shared-cache-quad-core-architecture.png

e Okay -- so I made the fix in regards
to accessing ‘64 bytes’ (16 ints, 4
bytes each) per thread

o But we’re still slower!

m (In fact, ~10 times slower now than
previous threads example, and
several orders of magnitude slower
than simple sequential code)

(Brilliant talk by Scott Meyers on this by the way!
https://www.youtube.com/watch?v=WDIkqP4JbKE)

11 std::array<int,256> shared global data;

helper(){
4 std::cout << std::thread::hardware_concurrency() <<

15 }

main() {

helper();

std: :memset(shared global data.data(), ©, z {)*shared_global data.size());

AdditionWorker= [](index, jobSize){

i = index*jobSize; i < (index+1) * jobSize; i++){

(
shared_global_data[i] += 1;

B EadRt

std::vector<std::jthread> threads;

(i=0; i ;i) {
threads.push_back(std::jthread(AdditionWorker,i,16));

}

std::cout << << std::endl;

real Oml15.204s

user Oml.995s
SYS Oml18.234s 83

https://www.youtube.com/watch?v=WDIkqP4JbkE

e Note: Slight confession -- the
amount of work in our ‘thread’is SO | ——————
trivial we should never have used {{ S EG_G_—GS———
threads in the first place

o BUT --T1 have to introduce these ideas to :
you Somehow in a Slideshow :) Adc(iitionWorkeﬁ [1(index, jobSize){

main() {

helper();

std: :memset(shared global data.data(), ©, z {)*shared_global data.size());

jobSize; i < (index+1) * jobSize; i++

i = index*j
shared_global_data[i] += 1;

B EadRt
std::vector<std::jthread> threads;

(i=0; 1 < 16; i++){
threads.push_back(std::jthread(AdditionWorker,i,

<< std::endl;

Om15.204s

Oml.995s

(Brilliant talk by Scott Meyers on this by the way! 84
https://www.youtube.com/watch?v=WDIkqP4JbKE) < Om18.234s

https://www.youtube.com/watch?v=WDIkqP4JbkE

First Attempt at Reusable Threads with a
Thread Pool

Removing issue of thread creation

85

Thread Pools

e A thread poolis a ‘pool’ of threads that are allocated at startup
o The ‘pool’ of threads is long lived, and ‘grab’ work as needed.

e I'm going to show a first attempt of a thread pool, but we’ll need

some mechanism to ensure our ‘threads remain alive’
o Remember-- a std::thread (or std::jthread) is meant to execute one time.

86

Thread Pool - First Attempt (1/2)

> shared global data;

12 std::array<int,

<siz threadcount>

o A first attempt to create a ‘struct . ThreadpooL
ThreadPool’ on the right T
o The end result is the same 5 }
¢) The result is correct, but we get void executeAll(size t iterations, 7e t jobSize){
similar performance when i LEELY otk =
compared to our prior data-parallel 24 / | : :
example . (C(()Unt <"1§:r?tiozsit{1readcount' i+4){
But we’ve not yet solved our 7
problem of thread creation -- but 29 .
we are getting closer, and getting : g oML 1
some encapsulation. }
It’s important to notice 54 std::function<void(int,int)> command;
however, that in our array we ; std::array<std::jthread, threadcount> threads;
are still creating new threads 38 +-- 10 Lines: ENTry POINt £0 PrOGram------------------momoommomo o
. . U AddltlonWorker- e t 1ndex ;ize t jobSize
(USIIlg ‘mOVG aSSIgl’lmel’lt’) r(size t i = 1n([1(19)(<]obSlze a I (index+]) * jot))éize; i++){
50 shared lobal data[i] += 1;
e But we can do better 51) ” .
real Om2.262s =2

threads[i] = std::jthread(command, i, jobSize);

user GmG 3445 ‘:; iuto threadPool = ThreadPool<4>(AdditionWorker);

SYysS Om2.710s threadPool.executeAll(,64);

So our goal is to figure out how to
keep threads alive, and then
communicate (i.e. signal) to them
that we have meaningful work to do

Topics Outline

o—DataParallelsm
e Synchronization Primitives
o mutexes and mutex management
o Condition Variables
o semaphores
latches / barriers
e Promise and Futures
o async
o packaged_tasks
e Debugging concurrency
o GDB and UDB. 89

@)

Synchronization Primitives

Concurrency support library (c++11)

thread — jthread (C++20)

atomic — atomic flag

ic_ref (C++20) — memorv_order

Mutual exclusion — Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

90

Synchronization

e Not all of our problems are going to
be ‘data parallel’

e And even in the cases where we do
have data parallelism, we cannot
afford to keep spawning new threads

e This is where we are going to need
more fine-grained synchronization!

i

Concurrent - Needs synchronization at station

Mutual Exclusion

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag

atomic_ref (QiﬁZO) — memory order
Mutual exclusion| — Semaphores (C++20)
Condition variables — Futures

latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

92

Mutual Exclusion

e A std::mutex is our first synchronization tool.
o It helps us synchronize in the sense that only 1 operation can happen while the
lock is held.
m (Thus making that operation atomic)
e Thus a std::mutex enables ‘mutual exclusion’ to a block of code.
o Thus, the operation is ‘atomic’ Analogy:
m Think about having exactly 1 key to your home, and you always carry the key
with you.
Only the person who has the key can access the house.
When the person enters, they lock the door
When the person leaves, they can pass on the key to someone else to enter, who
will also lock the door when they enter.

93

std::mutex (1/2)

e Four new lines of code @ static_int shared value = 0;
#include <mutex> library s L
A global lock with std::mtuex
A lock() and unlock() call on
our global lock

A

(T B
(U] BN (VSN S N

id increment_shared value(){
glock.lock(); |
shared value = shared value + 1;
glLock.unlock(); |

==

SN

[T

O 00

int main() {
std::vector<std::thread> threads;

for(int 1=0; 1 < ;5)
threads.push_back(std: :thread(increment_shared_value));
}

for(int 1=0; 1 < ;5)
threads[i].join();
}

std::cout << << shared_value << std::endl;

AU B WNEO

~

O 00

1
y)
D
-
.
2
y)
2
v,
Z
’)
D
2
-
3

return 0;

N = O

w

mike:concurrency$ g++-10 -std=c++17 thread6.cpp -o prog -1lpthread

mike:concurrency$
Result = 1000
mike:concurrency$
Result = 1000
mike:concurrency$
Result = 1000
mike:concurrency$
Result = 1000
mike:concurrency$
Result = 1000

/prog

./prog
./prog
./prog

./prog

0N

(@ 0 © 4 N =N

int shared value =

std: :mutex glock;

(Y

3 =

V R OIW0 00 N

w

gLock.lockZ);

alue(){

==

S

shared value

= shared value + 1;

=

glock.unlock();

(IR
O 0~ o\un

int main() {
std::vector<std::thread> threads;

DN RO

[

Ny b

O 00

std::cout <<

W W WMNMNNNMNNNMNNN e

N = ©

;5)

threads.push_back(std: :thread(increment_shared_value));

;5)
threads[i].join();

<< shared_value << std::endl;

std::mutex and mutual exclusion (1/4)

e So what our lock is doing L gtgg;engﬁghaf ed_value(){

is providing access to only & shared_value = shared_value +
one thread at a time) ghock-untack();

(mutually exclusive

access).

96

std::mutex and mutual exclusion (2/4)

increment_shared_value(){

e So what our lock is doing sl bk 1ockt):

1s providing access to only
one thread at a time
(mutually exclusive

access).

o Thisregion is called the
‘critical section’ that is
protected by the lock.

o Critical because we only
want one thread at a time to
enter and modify the shared
state in the program.

gLock.unloCk();

97

std::mutex and mutual exclusion (3/4)

increment_shared_value(){

e So what our lock is doing sl bk 1ockt):

is providing access to only
one thread at a time
(mutually exclusive

glock.unlock();

access).
o Thisregion is called the thread 1 t:‘b"ggf'e (;‘)
‘critical section’ that is (obtains
protected by the lock. 29

SV

o Critical because we only
want one thread at a time to
enter and modify the shared

state in the program. Critical section

98

(Aside) Problem with Threads -- Reading & Writing

e Data Race (or race condition)

o Because data is shared--one or more thread
could be writing to the same piece of
memory at the same time

m One thread may have read a ‘stale’
value right before the new ‘write’ to
the value

e The thread that then writes will
update +1 to a stale value,
overwriting the other threads SRl WL IE
update

o This makes the operation non-deterministic

m l.e. We may get unexpected or
undefined results regarding the final Depends on the
value based on a non-deterministic interleaving of
order of operations read/write operations

Resulting value?

99

| What happens if the lock is never returned? == [PR T

(e.g., equivalent to someone taking the only key for
your house, walking in, locking the door, then

acceTs flushing key down toilet)

‘critical section’ that is (obtains
protected by the lock. 29
o Critical because we only
want one thread at a time to
enter and modify the shared

state in the program. Critical section

thread n
(blocked)

100

Deadlock - lack of any progress for a thread (1/2)

e Deadlock
o Isthe prevention of a thread from ever
acquiring a resource
m Thus, no forward progress can be made

9 static int shared_value = 0;
(the thread waits forever) .

: : 12 void increment_shared_value(){
o This typically happens when a thread does R i

not release a lock, and goes out of scope or shared_value =shared value + 1;
otherwise terminates before releasing the

lock

101

Fixing deadlock
Re-run code, and see if you are missing a pair

of lock/unlock

Static analysis techniques (i.e. thread
sanitizers) may detect deadlock before
compilation.

Otherwise deadlock has to be carefully
detected at run-time and fixed.

Note: Deadlock is the most extreme
form of starvation

Starvation is when a thread cannot fairly
acquire access to a resource

nt shared_value

Lf std:ihutex glock;

id increment_shared_value(){
glock.lock();
shared_value = shared_value + 1;

Careful with std::mutex (1/2)

e So let’s make sure we have
a lock for every unlock
o Our code is fixed
right?

4? static int shared_value = 0;
o (I agree this looks 8 stusnuErgheeg
12 void increment_shared_value(){
correct) 13 glock.lock():
. . 14 shared_value = shared _val s
e The problem isif another |[EEEEFTTRTIT= AN bE e

16 }
programmer comes and

updates line 14

103

So let’s make sure we have
a lock for every unlock

increment_shared_value(){

o Qur code is fixed gliock. 1ockDDs

{
. shared_value = shared_value + 1;
right? ;
} (...)

o (I agree thislooks |

}

Correct)) gLock.unlock();

Maybe our object can throw an exception, or a programmer updates to the following

So this code will also deadlock! Consider the more complex case where some
‘exception’ is thrown and we ‘forget’ to also release the lock in catch.

You could still remember to use a lock, but we have a better tool

Prefer lock_guard (C++11)
over lock/unlock (1/2)

OoO~NOAuUT D WN -

e We instead of a lockGuard that [FEEHRNIE
can ‘wrap’ an individual

int shared_value =

glock;

increment_shared_value(){

std: :mutex =
o The destructor of lock_guardgs

std: :lock_guard<std: :mutex> lockGuard(glLock);

will take care of releasing
the lock
e std:lock guard is a good
example of RAII
o lock_guard takes ownership
of the lock, and when we

try{

shared_value = shared_value +

throw

}catch(...){

std:

recurn;

:cout <<

o]

.
3

leave scope the mutex is
released (and the lock_guard\ep
destroyed)

Reciilt+

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
= 1000

returning
returning
returning
returning
returning
returning
returning
returning
returning
returning

from
from
from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

https://en.cppreference.com/w/cpp/thread/lock_guard

e We instead of a lockGuard that
can ‘wrap’ an individual
std: :mutex
o The destructor of lock_guar
will take care of releasing
the lock

|
std::lock_guard is only 3 member functions

Member functions

(constructor) con;tructs a Iock_‘guard, optionally locking the given mutex
(public member function)

(destructor) dest.ructs the Iock_guard object, unlocks the underlying mutex
(public member function)

— notcopy-assignable
operator=deleted] (public member functio

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard

std: :scoped_lock - Other mechanisms

e std::scoped lock (C++17) -
o An update to to lock_guard, but can acquire multiple locks at once
m e, scoped_lock(mutex1,mutex2);
m Prefer scoped_lock (over lock_guard) if you are able to utilize C++17.

Member functions

constructs a scoped lock, optionally locking the given mutexes

(constructor) (public member function)
destructs the scoped lock object, unlocks the underlying mutexes
(destructor) 4 : i ’pﬁ. be J ying
(public member function)
: ~ nhot copy-assignable
operator=[deleted] DY 9

(public member function)

https://en.cppreference.com/w/cpp/thread/scoped_lock

std: :unique_lock - Other mechanisms

e std:unicue lock (C++11) -

(@)

A bit more powerful than lock_guard and
scoped_guard in that we can control locking and
unlocking

m Used in conditon_variable (coming up)
Also follows RAII so we can use it safely.

(constructor)

(destructor)

operator=
Locking

lock

try_lock

try_lock_for

try_lock_until

unlock
Modifiers
swap
release
Observers
mutex
owns_lock

operator bool

Member functions

constructs a unique_ lock, optior
(public member function)
unlocks (i.e., releases ownership
(public member function)

unlocks (i.e., releases ownership
(public member function)

locks (i.e., takes ownership of) th
(public member function)
tries to lock (i.e., takes ownershig
(public member function)
attempts to lock (i.e., takes owne
mutex has been unavailable for t
(public member function)
tries to lock (i.e., takes ownershiy
has been unavailable until specifi
(public member function)
unlocks (i.e., releases ownership
(public member function)

swaps state with another std: :u
(public member function)
disassociates the associated mut
(public member function)

returns a pointer to the associate
(public member function)

tests whether the lock owns (i.e.,
(public member function)

tests whether the lock owns (i.e.,
(public member function)

https://en.cppreference.com/w/cpp/thread/unique_lock

There exist several other primitives you can find here

o httDS://en.CDDreference.C Mutual exclusion

Mutual exclusion algorithms prevent multiple threads from simultaneously accessing shared resources. This prevents
data races and provides support for synchronization between threads.

Om/W/CD D/thre ad#MUtua e e provides basic mutual exclusion facility

mutex (C++11)

(class)

- . rovides mutual exclusion facility which implements locking with a timeout
1 exclusion g .

provides mutual exclusion facility which can be locked recursively by the same
recursive_mutex (c++11) thread

o e.g. timed_lock,

provides mutual exclusion facility which can be locked recursively

3 recursive_timed_mutex (c++11) by the same thread and implements locking with a timeout
recursive_mutex, A T s P ‘

Defined in header <shared mutex>

provides shared mutual exclusion facility
shared_mutex, etc. shared_mutex (c++17)

provides shared mutual exclusion facility and implements locking with a timeout
(class)

shared_timed_mutex (c++14)

Generic mutex management
Defined in header <mutex>
implements a strictly scope-based mutex ownership wrapper
(class template)
deadlock-avoiding RAIl wrapper for multiple mutexes
(class template)
implements movable mutex ownership wrapper
(class template)
implements movable shared mutex ownership wrapper
(class template)

lock_guard (c++11)
scoped_lock (C++17)
unique_lock (C++11)

shared_lock (c++14)

defer_lock_t (c++11)
try_to_lock_t (c++11)
adopt_lock_t (c++11)

tag type used to specify locking strategy

(class)

defer_lock (c++11)
try_to_lock(c++11)
adopt_lock (c++11)

tag constants used to specify locking strategy
(constant)

109

https://en.cppreference.com/w/cpp/thread#Mutual_exclusion
https://en.cppreference.com/w/cpp/thread#Mutual_exclusion
https://en.cppreference.com/w/cpp/thread#Mutual_exclusion

Topics Outline

e—DPataParalelism

e Synchronization Primitives
o—Htexes-anc-utesxmanagement
o Condition Variables
o semaphores
o latches
o barriers

e Promise and Futures
o async
o packaged_tasks

e Debugging concurrency

o GDB and UDB. o

Condition variables

A condition variable is a synchronization primitive that allows multiple threads to communicate with each other. It allows
some number of threads to wait (possibly with a timeout) for notification from another thread that they may proceed. A
condition variable is always associated with a mutex.
Defined in header <condition variable>
provides a condition variable associated with a std: :unique Tock
(class)
provides a condition variable associated with any lock type
(class)
schedules a call to notify all to be invoked when this thread is completely
notify all_at_thread_exit(c++11) finished
(function)

lists the possible results of timed waits on condition variables
(enum)

condition_variable (c++11)

condition_variable_any (c++11)

cv_status (c++11)

Condition Variables

A way to signal an event between 2 or more threads

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag
atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables| — Futures
Latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

Introducing Condition Variables

e Condition variables

o Allows us to keep threads alive -- without having to spawn new threads,
m We have discovered that otherwise creating threads is expensive

e The use case for condition variables

o Dispatch work to worker threads periodically in order to do work on a subset of
data.

e Condition variables have two main methods:

o wait and notify.
m wait will stop the calling thread and put it to sleep
m notify will awaken the thread

e Thus a condition variable is often used as an efficient ‘signaling
pattern’

112

Condition Variables Example

Y A Condition Variable allows r:mutex shared lock between producerconsumer;

::condition variable cv;

us to otherwise ‘signal’ from it e 4 o
one function to the other
when there is work to be

done. Observe that we need three parts:
o A common pattern is the 1. a mute_x. (for syr)chronization)
producer/consumer pattern . aaconql'gl(‘)ar\]v_v\;igi’blaiother thread
o When data is ‘produced’ then a 3 3 ‘;/ariable’ (e.g. ready)
signal is made that work is ready a. This variable will be protected
to be acquired and processed by by the lock

a ‘consumer’ thread.

113

Condition Variables Example (producer)

The job of the producer
is to do some work on a

protected piece of data

o (Note std::lock_guard with
locking safely through
RAII)

It’s worth noting also at
this point that our
‘consumer’ will be
blocked until ‘notified’
(See notify_all)

; ;

15 std::mutex shared lock between producerconsumer;
16 std::condition variable cv;

17 | ready {)3

18 std::queue<int> shared queue;

id producer() {
t i=0; 1 <'§5; i++)
:this thread::sleep for()

std::lock guard<std::mutex> lk {shared lock between producerconsumer};

shared queue.push(i);

cv.notify all();
}

std::lock guard<std::mutex> 1k {shared lock between producerconsumer};
ready = 5

}
cv.notify all();

Condition Variables Example (consumer)

e Here’s the consumer side ‘ std::mutex shared_lock between producerconsumer;
¢ 121 16 std::condition variable cv;
e The consumer ‘diligently 17 | ready {falsc};
waits’ to acquire the lock el L e 2llal B Ll
e The ‘wait’ portion
otherwise is where we static void consumer() {
(!ready) {
awaken When Wwe are std: I:ﬁﬁﬁi(}qlueflock<s‘cd: :mutex> 1 {shared lock between producerconsumer};
nOtlfled by the producer cv.wait(l, [1 { Ishared queue.empty() || ready; });
If ‘ready’ is ‘false’ then we std::print(, shared queue.front());

release the lock and wait shared_queue.pop() ;
here blocked -- but ‘we fall
asleep’ (rather than have a
spin lock)

o If the condition is
otherwise true, then we
awaken when we’re
notified and acquire the
lock to proceed forward.

115

Condition_variable with thread pool -- what’s the point?

e We went from a data parallel problem to a more efficient ‘thread
pool’

o The ‘data parallel’ problem may or may not need to reuse threads -- perhaps
crunching numbers is just fine
o However -- it’s useful to know how to reimplement some of these systems.

e The point of the mechanism (i.e. a conditional variable) is to
understand this ‘signal pattern’ is going to be we now have a

mechanism to ‘block’ our threads when executing

o They can then ‘pick up’ work, or be assigned new work when needed.

o We could have implemented this with a ‘mutex’ and ‘while-loop’ as well, but it gets
clunky, and it’s inefficient to constantly check if we should advance (i.e. thisis a
‘spin-lock’)

116

(Aside) condition_variable

e Tempting to just use a lock and flags, however that often results in
you implementing a ‘spin lock’
e condition_variable is more efficient than spin locks
o A spin lock wastes lots of CPU cycles constantly running a loop

117

Topics Outline

o—DataParallelsm
e Synchronization Primitives

o—Htexes-anc-nytesxmanagement
; ™ bl

o semaphores
o latches / barriers
e Promise and Futures
o async
o packaged_tasks
e Debugging concurrency
o GDB and UDB. 118

Semaphores

A semaphore is a lightweight synchronization primitive used to constrain concurrent access to a shared
resource. When either would suffice, a semaphore can be more efficient than a condition variable.
Defined in header <semaphore>

semaphore that models a non-negative resource count
(class template)

semaphore that has only two states
(typedef)

counting_semaphore (C++20)

binary semaphore (c++20)

Semaphores

An even more primitive way to signal

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag
atomic ref (C++20) — memory order
Mutual exclusion —Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

119

(1/2) Let’s look at that word semaphore that was
in the talk today :)

Semaphores --

120

(2/2) And we’d probably do well to define the
word as well.

Semaphores --

121

Semaphore Wiki Definition

Semaphore (lit. 'apparatus for signalling'; from
Ancient Greek ofua (séma) 'mark, sign, token' and

Greek -@opocg (-phoros) 'bearer, carrier')m is the
use of an apparatus to create a visual signal

transmitted over distance.?I®! A semaphore can be
performed with devices including: fire, lights, flags,
sunlight, and moving arms.[21314] Semaphores can

be used for telegraphy when arranged in visually
connected networks, or for traffic signalling such as

in railway systems, or traffic lights in cities.!

https://en.wikipedia.ora/wiki/Semaphore

https://en.wikipedia.org/wiki/Ancient_Greek_language
https://en.wiktionary.org/wiki/%CF%83%E1%BF%86%CE%BC%CE%B1#Ancient_Greek
https://en.wikipedia.org/wiki/Greek_language
https://en.wiktionary.org/wiki/-%CF%86%CF%8C%CF%81%CE%BF%CF%82#Greek
https://en.wikipedia.org/wiki/Semaphore#cite_note-1
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Flag
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Semaphore#cite_note-4
https://en.wikipedia.org/wiki/Telegraphy
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Traffic_light
https://en.wikipedia.org/wiki/Semaphore#cite_note-5
https://en.wikipedia.org/wiki/Semaphore

A semaphore is a signal -- just like what we saw before

apparatus for signalling

Each signal here is a semaphore

-- ‘raising’ and ‘lowering’ of the ¥
signal indicating that a train can or ** ¢,
cannot pass through

https://darkcoding.net/images/2009/05/pro1.ipg 123

https://en.wikipedia.org/wiki/Ancient_Greek_language
https://en.wiktionary.org/wiki/%CF%83%E1%BF%86%CE%BC%CE%B1#Ancient_Greek
https://en.wikipedia.org/wiki/Greek_language
https://en.wiktionary.org/wiki/-%CF%86%CF%8C%CF%81%CE%BF%CF%82#Greek
https://en.wikipedia.org/wiki/Semaphore#cite_note-1
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Flag
https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Semaphore#cite_note-EB-2
https://en.wikipedia.org/wiki/Semaphore#cite_note-FM-3
https://en.wikipedia.org/wiki/Semaphore#cite_note-4
https://en.wikipedia.org/wiki/Telegraphy
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Optical_telegraph
https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Traffic_light
https://en.wikipedia.org/wiki/Semaphore#cite_note-5
https://darkcoding.net/images/2009/05/pro1.jpg

In our analogy (1/2)

e trains === worker threads

o Trains spend time doing
something useful
(transportation)

e station === shared memory

o This is where we ‘drop off’
(write) or ‘pick up’ (read) data

e signal === semaphore
o A primitive for making sure our
shared resource (train tracks)
are owned by only 1 train at a
time.

e trains === worker threads Let’'s see a code example of

o Trains spend time doing how to use a Semaphore
something useful

(transportation)
e station === shared memory

o This is where we ‘drop off’
(write) or ‘pick up’ (read) data

e signal === semaphore |
o A primitive for making sure our |
shared resource (train tracks)
are owned by only 1 train at a
time.

binary_semaphore

std::binary semaphore gSem(0);

([P].’OVided iS al’l eXample void WorkerThread(int arg){
of a binary_semaphore
e binary_semaphores hold gsen.acquire(); | | |
size t tid = std::hash<std::thread::id>{}(std::this thread::get id())
avalueof1oro ST n] 3T
(available or unavailable) , TR
o Itlooks alotlike a .
std::mutex, in that we WL N &
acqulre/release - but lt’s std::jthread j(WorkerThread,10);
just a Signal std::println(:)i

No real concept of a thread
‘owning a lock’ for a scope
m Could beusedin
similar manner, but is
more lightweight.

std::this thread::sleep for(std::chrono::seconds(1));
gSem.release();

gSem.acquire();

(
std::printlin(
gSem. release()

Thread Safe Data Structures

ThreadSafe Queue

At this point, it’s probably a
good idea to start building some
abstractions

Here’s a very trivial thread-safe
queue we can make it safer or

faster later
o e.g. Perhaps make this lockless

o e.g. Perhaps ‘reader/writer’ pattern

o e.g. Move any work that does not
require synchronization to before
the lock

Note: This creates a ‘shared data
structure’
o Depending on the task, we might

have to be careful that this
introduces a bottleneck

W
(@) 9]

- ThreadSafe{

t Queue{
t int& front() const{

std::lock guard<std::mutex> guard(mMutex);
‘eturn mQueue.front();

}
d push(int element){
std::lock guard<std::mutex> guard(mMutex);
mQueue.push(element);
}
id pop(){
std::lock guard<std::mutex> guard(mMutex);
mQueue.pop();
}

std: :queue<int> mQueue;

e std::mutex mMutex;

Topics Outline

o—DataParallelsm
e Synchronization Primitives

o—Htexes-anc-nytesxmanagement
; ™ bl

o—-Ssemaphores

o latches / barriers

e Promise and Futures
o async
o packaged_tasks
e Debugging concurrency
o GDB and UDB. 129

Latches and Barriers

Grouping threads

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag
atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

130

Latch

I’ll demonstrate now a

std: :latch with our thread
safe queue

A latch is like a semaphore,

but it only counts down
o It’s a‘onetime only’ data

structure otherwise (i.e. not
reusable)

A std::barrier on the other
hand is reusable

32 lines: Thread-Safe namespace for versions of containers.

't main() {

std::println();

st int problemSize =
ThreadSafe :Queue q;
std::latch jobsToComplete(problemSize);

wwwwww) lambda = [&](int x){
q push(x);

jobsToComplete.count down();

Y

std::vector<std::jthread> threads;

(size t i=0; i < problemSize; ++i){
threads.push back(std::jthread(lambda,i));
}

jobsToComplete.wait();

(size t i=0; i < problemSize; ++i){
std::print(,q.front());
q.pop();

std::println()i

Topics Outline

e Promise and Futures
o async
o packaged_tasks
e Debugging concurrency

o GDB and UDB.
132

Futures

The standard library provides facilities to obtain values that are returned and to catch exceptions that are thrown by
asynchronous tasks (i.e. functions launched in separate threads). These values are communicated in a shared state, in
which the asynchronous task may write its return value or store an exception, and which may be examined, waited for,
and otherwise manipulated by other threads that hold instances of std: : future or std: :shared future that reference
that shared state.

Futures

A way to signal an event between 2 or more threads

Concurrency support library (c++11)
thread — jthread (C++20)
atomic — atomic flag
atomic ref (C++20) — memory order
Mutual exclusion — Semaphores (C++20)
Condition variables — Futures
latch (C++20) — barrier (C++20)
Safe Reclamation (C++26)

133

Asynchronous Programming

Another form concurrency where execution can happen independently of the main program
flow

134

std::async

We can through away much of the signaling with std::async
The idea is we execute a callable asynchronously, and we are only
blocked if we are awaiting the result (in a future)

o Note: We will still need locks for shared resources however -- that remains true!

e Good way to use threads

o Partition to I/O bound tasks and CPU bound tasks (or perhaps even GPU)
o Goalisto avoiding blocking

std::aSync
Defined in header <future>
template< class F, class... Args > (1) (since C++11)
std::future</* see below */> async(F&& f, Args&&... args);
template< class F, class... Args >

2 (si ++
std::future</* see below */> async(std::launch policy, F&& f, Args&&... args); i

The function template std: :async runs the function f asynchronously (potentially in a separate thread which might be }
a part of a thread pool) and returns a std: : future that will eventually hold the result of that function call.

ND

example

AU B W

int square(int x){
return x*x;

O 0~

e #include <future>

e std::async
o Promise and Future
m Promise - Will hold

the result
Future - Where the
future result will be
stored

o We are blocked at a.get()

until the value is returned.

int main() {

TSI TN

N = O

w

ito asyncFunction = std::async(&square,12);

N T T Gl G
I

~I-'ON Ut D

int result = asyncFunction.get();

O

A WNE®

std::cout << << result
<< std:: endl;

1
]
1
4
1
1
2
)
<
~
<
-
P,
<
-
<
)
L

~N o

1,1

mike:concurrency$ g++-10 -std=c++17 thread10.cpp -o prog -lpthread
mike:concurrency$./prog
The async thread has returned! 144

https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/promise

A Concrete Example for std::async

e Blocking Input/Output (I/0)

o [I/Ois any task where we are reading or
writing data.

m e.g. network connection (e.g.
downloading data), disk load (e.g.
opening a file)

o We can use a ‘background thread’ (i.e.,
std::async) execute to start loading that
data.

m The application can then proceed
unblocked until it needs that data.

m If we do not have the data ready Data to be
when we need, we are thus ‘blocked’ loaded in

-- hence the term Blocking I/O background

in a buffer

Async I/0 Simulation (1/5)

e “mocked” version of using

an async thread to load data
o We spawn a ‘background
thread’ asynchronously using
std::async
Then in our ‘main loop’ we
continuously query to see if our

function has returned

(I have added a few artificial
sleeps to make it more
interesting)

bufferedFileLoading(){
bytesLoaded= ©;

(byteslLoaded < M
std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds()3
bytesLoaded+= 3
}
main() {
std::future< > backgroundThread = std::async(std::launch::async,

bufferedFileLoading);

std::future_status status;

Le(N

std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
status = backgroundThread.wait_for(std::chrono::milliseconds(1));
if(status == std::future_status::ready){

std::cout << << std::endl;

>

Here we’'ll create a
background thread that
will execute with
std::async

I've been explicit in
setting up the parameters
and types.

Also, there is a ‘status’
that we’ll keep track of so
we know when a value

has been returned

bufferedFileLoading(){
bytesLoaded= ©;

(bytesLoaded < M
std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds()3
bytesLoaded+= 3
}
main() {
std::future< > backgroundThread = std::async(std::launch::async,

bufferedFileLoading);

std::future status status;

(N

std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
status = backgroundThread.wait_for(std::chrono::milliseconds(1));

(status == std::future_status::ready){
std::cout << << std::endl;

Here we are reading in
‘bytes’ from a file.

in some # of bytes from a

data source
thread’ asynchronously using
std::async
Then in our ‘main loop’ we
continuously query to see if our

function has returned

(I have added a few artificial
sleeps to make it more
interesting)

bufferedFileLoading(){
bytesLoaded= ©;
(bytesLoaded < M
std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds())
bytesLoaded+= 3

(= ¥]

main() {

std::future< > backgroundThread = std::async(std::launch::async,
bufferedFileLoading);

std::future_status status;

B (N

std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
status = backgroundThread.wait_for(std::chrono::milliseconds(1));

if(status == std::future_status::ready){
std::cout << << std::endl;

>

e “mocked” version of using

an async thread to load data
o We spawn a ‘background

In our main loop we will
check every 1 millisecond

the status of our future
value (which is wrapped in
a promise object)

bufferedFileLoading(){
bytesLoaded= ©;

(byteslLoaded < M
std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds()3
bytesLoaded+= 3
}
main() {
std::future< > backgroundThread = std::async(std::launch::async,

bufferedFileLoading);

std::future_status status;

B (N

std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
status = backgroundThread.wait_for(std::chrono::milliseconds(1));

if(status == std::future_status::ready){
std::cout << << std::endl;

>

Here’s what our execution
looks like

£faoradFi

(Again--code available
seo--4 from github)

bytesu

n() {

::future< > backgroundThread = std::async(std::launch::async,
bufferedFileLoading);

::future_status status;

B (N

std::cout << << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
status = backgroundThread.wait_for(std::chrono::milliseconds(1));

if(status == std::future_status::ready){
std::cout << << std::endl;

2 +-- 11 lines: // Demonstrates packaged task, which effectively is what you cc

packaged_task

t SomeWork(int x, int y){
std::this thread::sleep for(std::chrono::seconds(3));
X¥X + y*y;
e A packagedtaskisa int main() {
¢ . . s std::println()
generalization’ or
bulldlng blo(:-l{ for std::packaged task<int()> task(std::bind(SomeWork,1,2));
Std::async std::future<int> result = task.get future();
Provided in this example i Tines: CalT e Hask oo s e e e e
I ‘pac:kage up; some std::thread myThread(std: :move(task));
. td::println()
work to be done in a std:pRintin|).
¢) std::println()
taS]_{ std::println();
o The task is invoked, and

starts executing

Concurrently std::println(,result.get());

We're blocked until the

result is otherwise ready myThread.Joine);

std::println()

Topics Outline

e Debugging concurrency
0 GDB and UDB. 144

Troubleshooting and Debugging Concurrency

Let's see the program run!

145

Live GDB: Conditional Variable Demonstration

e Build Command
o g++-g-Wall -std=c++23 simple_cv.cpp -0 prog -Ipthread

e EXecute
o ./prog
e Debug

o gdb --tui./prog
o (Can try ‘info threads’) to see the threads
o (Still a good idea to setup ‘set scheduler-lock on’ as well)

146

Live Live Recorder and UDB: Demonstration

e Run and create a recording from Undo -- if you prefer instead of
gdb

o /home/mike/Downloads/undo-7.2.1/live-record ./prog
o Then use ‘rr’ or ‘udb’ to replay
m /home/mike/Downloads/undo-7.2.1/udb
prog-3008963-2024-05-14T10-37-40.324.undo
e Try ‘start’ ‘layout src’ and then using ‘n’ to step through
e ‘info threads’ and other GDB knowledge works as well
o Neat way to debug these things is with ‘live recorder’
m https://docs.undo.io/UsingThel.iveRecorderTool.html

147

https://docs.undo.io/UsingTheLiveRecorderTool.html

Wrap-Up

We’ve done a quick tour of C++ concurrency

Given the topics below there’s
much to learn -- and we have
not even gotten to measuring
performance.
Concurrency is a deep and
important topic

o The “free lunch [really] is over”

(Herb Sutter 20 years ago)

Transport Tycoon
std:: thread and std::;jthread
Launching and joining threads
o Data Parallelism

Synchronization Primitives

o mutexes and mutex management

Condition Variables
o semaphores
latches / barriers
Promise and Futures
async
o packaged_tasks
Debugging concurrency
o) GDB and UDB.

149

More Resources

150

Operating Systems: Three Easy Pieces

Free book chapters on concurrency.
https://pages.cs.wisc.edu/~remzi/OSTEP/

151

https://pages.cs.wisc.edu/~remzi/OSTEP/

152

Further resources and training materials

e Debugging Cheatsheet with UDB
o https://undo.io/resources/undo-cheat-sheet/

e Time Travel Debugging - Greg Law - Meeting C++ 2023
o https://www.youtube.com/watch?v=qyGdk6QMpMY

e Back to Basics: Debugging in Cpp - Greg Law - CppCon 2023
o https://www.youtube.com/watch?v=ggszy9GquRs

e Back to Basics: Debugging in C++ - Mike Shah - CppCon 2022
o https://www.youtube.com/watch?v=YzIBwqWC6EM

e Cool New Stuff in Gdb 9 and Gdb 10 - Greg Law - CppCon 2021
o https://www.youtube.com/watch?v=xSnetY3eolk

e CppCon 2018: Greg Law “Debugging Linux C++”
o https://www.youtube.com/watch?v=V1t6faOKjuQ

e CppCon 2016: Greg Law “GDB - A Lot More Than You Knew"

o https:/www.youtube.com/watch?v=-n9Fkqiebsg

153

https://undo.io/resources/undo-cheat-sheet/
https://www.youtube.com/watch?v=qyGdk6QMpMY
https://www.youtube.com/watch?v=qgszy9GquRs
https://www.youtube.com/watch?v=YzIBwqWC6EM
https://www.youtube.com/watch?v=xSnetY3eoIk
https://www.youtube.com/watch?v=V1t6faOKjuQ
https://www.youtube.com/watch?v=-n9Fkq1e6sg

Further resources and training materials

mike shah concurrency

e Playlist on C++ concurrency on .
YouTube: - o Q

o https://www.youtube.com/playlist?] . O e
ist=PLvv0ScY6vfd ocTP2ZLicggKnv Concurrency

=

Mike Shah [Concurren, a
00CXM
L 14 videos 76,385 views Last updated on Jul 17,2023
. . . » 5 Launching multiple std::thread in C++ | Introduction to Concurrency in Cpp
e Slides from this talk will be ' B

L]
m 1 h r 1 A series of videos to help users get 4 z jthread std::jthread in C++ 20 | Introduction to Concurrency in Cpp
. started with C++ concurrency in modem @ o .

cpp. Discussion of thread-based

concurrency, locks, async, promises,

futures, and atomics at a minimum will be

discussed. std::mutex and preventing data races in C++ | Introduction to Concurrency in Cpp

Mike Shah « 7.

154

https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

Further resources and training materials

Some useful talks on concurrency

GCAP 2016: Parallel Game Engine Design - Brooke Hodgman
o https://www.youtube.com/watch?v=JpmKo0zu4Mts

The MAW: Safely Multithreading the Deterministic Gameplay of
'Age of Empires IV'

o (Slideshow below -- talk may be available on YouTube or with GDC vault access)
o https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the

Multithreading the Entire Destiny Engine (GDC 2015)

o https://www.youtube.com/watch?v=v2Q zHG3vqg

Sean Parent: Better Code Concurrency
o https://www.youtube.com/watch?v=zULU6Hhp42w

155

https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.gdcvault.com/play/1027610/The-MAW-Safely-Multithreading-the
https://www.youtube.com/watch?v=v2Q_zHG3vqg
https://www.youtube.com/watch?v=zULU6Hhp42w

Today’s Talk

Today’s talk was inspired by a
book I read in graduate school
around 2015/2016

It’s a free book by Allen Downey

on synchronization
o https://greenteapress.com/wp/semap

hores/
The only primitive needed is a

semaphore

The Little Book of Semaphores

by Allen B. Downey

Download The Little Book of Semaphores in PDF.

The Little Book of Semaphores is a free (in both senses of the word) text-
book that introduces the principles of synchronization for concurrent
programming.

In most computer science curricula, synchronization is a module in an
Operating Systems class. OS textbooks present a standard set of prob-
lems with a standard set of solutions, but most students don’t get a good
understanding of the material or the ability to solve similar problems.

The approach of this book is to identify patterns that are useful for a va-
riety of synchronization problems and then show how they can be as-
sembled into solutions. After each problem, the book offers a hint before
showing a solution, giving students a better chance of discovering solu-
tions on their own.

The book covers the classical problems, including “Readers-writers,”
“Producer-consumer”, and “Dining Philosophers.” In addition, it collects
a number of not-so-classical problems, some written by the author and
some by other teachers and textbook writers. Readers are invited to cre-
ate and submit new problems.

https://greenteapress.com/wp/semaphores/
https://greenteapress.com/wp/semaphores/

NYC++ Meetup
o T— Thank you NYC++ 2024!

£2 1,376 members - Public group @ (Daniel, Nick, and Neel)

g Organized by Daniel Katz and 3 others

The Little Talk of Semaphores --
and a Tour of C++ Concurrency

18:30 - 20:30 ET Social: @MichaelShah

Thur. October 17, 2024 Web: mshah.io

60 minutes with Q&A Courses: courses.mshah.io

Introductory/Intermediate @ YouTube .

Audience www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

This slide is intentionally blank

Extra Slides

An interesting reality is that many
applications we write are I/O

Let’s try to answer our original
motivation about performance and
see how concurrency can help

remains orders of magnitude slower
m Thus, we often cannot fetch data
at the rate that we process it.

Our original motivation was about performance

(2/2)

e An interesting reality is that many m
applications we write are I/0O | \
bOlll’ld Processor g - 'éap grew 50%

o
..‘

- er year

o That means that we are waiting on A i

memory operations | " o o PUOUE SOEe e ey
o The figure to the right shows that et ss aat

while our processors have gotten s——)

faster over time, accessing memory SC R T

remains orders of magnitude slower R

m Thus, we often cannot fetch data o sso
at the rate that we process it. g o N

o1 o800y

—0

00 ; ‘ ‘ ‘ 161
1985 1990 1995 2000 2003 2005 2010 2015
Image source: https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf Year

